Patents Examined by Ladan Mohaddes
  • Patent number: 8021782
    Abstract: The present invention provides a nonaqueous electrolyte secondary battery with an excellent packing property and remarkably improved high-temperature cycle characteristics and thermal stability. The nonaqueous electrolyte secondary battery 10 includes a positive electrode plate 11 having a positive electrode active material able to absorb and desorb lithium ions, a negative electrode plate having a negative electrode active material capable of absorption and desorption of lithium ions, and a nonaqueous electrolyte, and the positive electrode active material includes a mixture of material A: LiwNixCoyMnzO2 (where 1.00?w?1.30, x+y+z=1, 0.40?x?0.50, and 0.30?y?0.40) and material B: LiwNixCoyMnzO2 (where 1.00?w?1.30, x+y+z=1, 0.30?x?0.35, and 0.30?y?0.35).
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: September 20, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shinya Miyazaki, Tatsuyuki Kuwahara
  • Patent number: 8003264
    Abstract: A process for the generation of electricity and the production of a concentrated carbon dioxide stream using a molten carbonate fuel cell. Anode off-gas is at least partly fed to a catalytic afterburner wherein it is oxidized with an oxidant consisting of part of the cathode off-gas and/or part of a molecular oxygen containing external oxidant stream, which external oxidant stream has at most 20% (v/v) nitrogen. The oxidized anode off-gas is brought into heat exchange contact with the remainder of the cathode off-gas and the remainder of the external oxidant stream to obtain cooled anode off-gas and a heated mixture of cathode off-gas and external oxidant which are fed to the cathode chamber as the cathode inlet gas. As soon as a set point in the carbon dioxide concentration at the cathode chamber outlet is reached, part of the cooled anode off-gas is withdrawn from the process.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: August 23, 2011
    Assignee: Shell Oil Company
    Inventors: Jozef Peter Paul Huijsmans, Gerard Jan Kraaij
  • Patent number: 8003248
    Abstract: An improved lid for closing the open end of a casing of an electrochemical energy storage device is described. The improved lid comprises a flat region having spaced apart upper and lower planar surfaces joined by a peripheral edge, an angled transition forming a boss protruding from the lower surface, and a bore extending through the boss to the upper surface. An electrical energy storage device is also described, which includes the improved lid secured to the open end of the casing container of the device.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: August 23, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Gary Freitag, Dominick Frustaci, Donald Kaiser
  • Patent number: 8003249
    Abstract: A stacked battery sealed by a film casing shows a raised degree of resistance against vibrations.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: August 23, 2011
    Assignee: NEC Energy Devices, Ltd.
    Inventor: Yoshitomo Hirota
  • Patent number: 8003258
    Abstract: An alkaline cell having an anode mixture comprising zinc particles, aqueous alkaline electrolyte, and molecular sieve additive. The cathode preferably comprises manganese dioxide. The cell may be cylindrical or any other shape or size. The molecular sieve additive preferably comprises a crystalline aluminosilicate material which is in at least a partially dehydrated state before admixture with the aqueous electrolyte, preferably potassium hydroxide. The aluminosilicate crystalline structure has average pore size between about 3 and 25 Angstrom. The addition of the molecular sieves to the zinc anode improves the cell's discharge capacity and service life. The molecular sieves preferably comprises between about 0.07 and 0.7 percent by weight of the anode mixture.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: August 23, 2011
    Assignee: The Gillette Company
    Inventors: Nikolai N. Issaev, Michael Pozin
  • Patent number: 7985512
    Abstract: An anode support for supporting an anode electrode in a fuel cell assembly in which the anode support has a first support member formed of a porous non-wettable material and a second support member abutting and joined with the second member and having a plurality of through openings. Also disclosed is a bipolar separator having an electrolyte barrier over predetermined limited portions of its outer surface so as to prevent or retard electrolyte creeping.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: July 26, 2011
    Assignee: FuelCell Energy, Inc.
    Inventor: Chao-Yi Yuh
  • Patent number: 7976996
    Abstract: The fuel cell system includes a fuel cell; a power conditioner that converts a cell power supplied from the fuel cell to a power corresponding to a load; a capacitor to which an excessive output power of the fuel cell is charged at the time of a low load operation and from which a power corresponding to the insufficient output power of the fuel cell is discharged at the time of a high load operation; a voltage detection means for detecting a voltage of the capacitor; and a control means that determines the low load operation or the high load operation, calculates an output power from the fuel cell to maintain the excessive power generated at the time of the low load operation within a space capacity of the capacitor, and controls the output power of the fuel cell not to exceed the calculated value.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: July 12, 2011
    Assignee: Omron Corporation
    Inventor: Haruyasu Murabayashi
  • Patent number: 7955741
    Abstract: A fuel cell which can directly extract electric power from a polysaccharide, such as starch, is provided. A fuel electrode is formed by immobilizing with an immobilizer, on an electrode comprised of, e.g., carbon, an enzyme responsible for decomposing a polysaccharide into monosaccharides, an enzyme responsible for decomposing the monosaccharide formed, a coenzyme (e.g., NAD+ or NADP+) which forms a reductant due to the oxidation reaction in the monosaccharide decomposition process, a coenzyme oxidase (e.g., diaphorase) for oxidizing the reductant of the coenzyme (e.g., NADH or NADPH), and an electron mediator (e.g., ACNQ or vitamin K3) for receiving electrons generated due to the oxidation of the coenzyme from the coenzyme oxidase and delivering the electrons to the electrode. The fuel cell comprises the fuel electrode and the air electrode that sandwich an electrolyte layer.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: June 7, 2011
    Assignee: Sony Corporation
    Inventors: Hideki Sakai, Takashi Tomita, Atsushi Sato, Yuichi Tokita
  • Patent number: 7951487
    Abstract: A positive electrode 2 includes a positive electrode current collector lead 70 connected to a core exposed part 78 formed at a longitudinal center of a current collector core 72. A negative electrode 3 includes a double-coated part 14 including an active material layer 13 and a porous protective film 28 formed on each surface of a current collector core 12, a core exposed part 18, and a single-coated part 17 which is located between the double-coated part 14 and the core exposed part 18, and includes the active material layer 13 and the porous protective film 28 formed only on one of the surfaces of the current collector core 12. A plurality of grooves 10 are formed in each surface of the double-coated part 14, while the grooves 10 are not formed in the single-coated part 17. A negative electrode current collector lead 20 is connected to the core exposed part 18. The negative electrode 3 is wound in such a manner that the core exposed part 18 constitutes a last wound end.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: May 31, 2011
    Assignee: Panasonic Corporation
    Inventors: Masaharu Miyahisa, Seiichi Kato, Mao Yamashita
  • Patent number: 7951494
    Abstract: The present invention provides a solid electrolyte with high ion-conductivity which is cheap and exhibits high conductivity in an alkaline form, and stably keeps high conductivity because of a small amount of the leak of a compound bearing conductivity even in a wet state. The invention is useful in an electrochemical system using the solid electrolyte, such as a fuel cell. The solid electrolyte with high ion-conductivity comprises a hybrid compound which contains at least polyvinyl alcohol and a zirconic acid compound, and also a nitrogen-containing organic compound having a structure of amine, quaternary ammonium compound and/or imine, obtained by hydrolyzing a zirconium salt or an oxyzirconium salt in a solution including water, polyvinyl alcohol, a zirconium salt or an oxyzirconium salt and a nitrogen-containing organic compound having a structure of amine, quaternary ammonium compound and/or imine coexist, removing a solvent and contacting with alkali.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: May 31, 2011
    Assignees: Nippon Kodoshi Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Haruo Sawa, Haruyuki Nakanishi, Shinichi Matsumoto
  • Patent number: 7943712
    Abstract: The present invention is directed to a catalyst system for synthesizing rubbery polymers, such as polybutadiene rubber, styrene-butadiene rubber, isoprene-butadiene rubber, or styrene-isoprene-butadiene rubber, that are amine functionalized and have a high trans microstructure. The catalyst system, in one embodiment, includes (a) an organolithium amine compound, (b) a group IIa metal salt of an amino glycol or a glycol ether, (c) an organoaluminum compound, and optionally (d) an amine compound. The amine functionalized rubbery polymers can be utilized in tire tread rubbers where the rubbery polymers may provide desirable wear properties without substantially sacrificing other performance characteristic(s), e.g., traction properties.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: May 17, 2011
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Adel Farhan Halasa, Wen-Liang Hsu, Laurie Elizabeth Austin, Chad Aaron Jasiunas, Steven Kristofer Henning
  • Patent number: 7935453
    Abstract: A UEA for a fuel cell having an active region and a feed region is provided. The UEA includes an electrolyte membrane disposed between a pair of electrodes. The electrolyte membrane and the pair of electrodes is further disposed between a pair of DM. The electrolyte membrane, the pair of electrodes, and the DM are configured to be disposed at the active region of the fuel cell. A barrier film coupled to the electrolyte membrane is configured to be disposed at the feed region of the fuel cell. The dimensions of the electrolyte membrane are thereby optimized. A fuel cell having the UEA, and a fuel cell stack formed from a plurality of the fuel cells, is also provided.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: May 3, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew J. Beutel, Saurabh Vyas, Ronald L. James, Steven G. Goebel
  • Patent number: 7931997
    Abstract: A fuel cell stack includes a plurality of fuel cells, a plurality of interconnects and a multi-material seal comprising a first seal material and a second seal material, where the second seal material first forms an effective seal at a higher temperature than the first seal material.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: April 26, 2011
    Assignee: Bloom Energy Corporation
    Inventors: Matthias Gottmann, David Weingaertner, Dien Nguyen
  • Patent number: 7927732
    Abstract: A compact, robust, multifunctional and highly manufacturable rechargeable battery cell is provided. The cell design dedicates minimal internal volume to inert components of the cell. This is accomplished, in part, by providing multiple functionalities to individual cell components.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: April 19, 2011
    Assignee: A123 Systems, Inc.
    Inventors: Jonah S. Myerberg, Donald G. Dafoe, Grace S. Chang, Andrew C. Chu, Hung-Chieh Shiao
  • Patent number: 7892692
    Abstract: A barrier film for a fuel cell is provided, including a polymeric membrane having a plurality of support features. The support features are adapted to militate against a deflection of the membrane under a pressure differential across the membrane. A fuel cell employing the barrier film has a first plate with a port formed therein, and a second plate disposed adjacent the first plate. The barrier film is disposed between the first plate and the second plate. The support features of the barrier film militate against an intrusion of the membrane into the port. A fuel cell stack formed from a plurality of the fuel cells is also provided.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: February 22, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Matthew J. Beutel
  • Patent number: 7875404
    Abstract: Fuel cells, fuel cell membranes, micro-fuel cells, and methods of fabricating each, are disclosed.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: January 25, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Christopher W. Moore, Jun Li, Paul Kohl
  • Patent number: 7868111
    Abstract: The present invention provides a method for producing ?-olefin polymer, comprising polymerizing ?-olefins in the presence of a halogen atom-containing acid catalyst by use of an aliphatic hydrocarbon having 3-12 carbon atoms, which contains 5 to 95 mass % of ?-olefin, as a raw material; removing catalyst residue and halogen-containing compounds by bringing a product in the polymerization step into contact with an aluminum atom-containing inorganic solid treatment agent with or without deactivating the catalyst; and separating the ?-olefin polymer. According to this method, the catalyst residue and other halogen-containing compounds can be removed, without relying on aqueous deactivation and separation steps using an alkaline aqueous solution or the like, from a polymerization reaction product obtained by polymerization in the presence of a halogen-containing acid catalyst by use of an ?-olefin-containing liquid hydrocarbon as a raw material.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: January 11, 2011
    Assignee: Nippon Oil Corporation
    Inventors: Toshio Okada, Yoshihiro Gohshi, Tamiko Suga
  • Patent number: 7851094
    Abstract: An example arrangement for providing power includes a microbial fuel cell and a controller for supplying power to a plumbing component. The controller supplies power using power generated by the microbial fuel cell. An example method of powering a plumbing device includes providing wastewater to a microbial fuel cell and generating power with the microbial fuel cell. The method powers a plumbing device using the power generated by the microbial fuel cell.
    Type: Grant
    Filed: February 2, 2008
    Date of Patent: December 14, 2010
    Assignee: Masco Corporation
    Inventors: David M. Burke, William Schwingel
  • Patent number: 7846220
    Abstract: An electrochemical cell, and a method of producing an electrochemical cell are provided. The method includes a step in which a counter electrode film and a mold film are crimped. A sol-gel precursor is inserted into a pore in the mold film provided on the counter electrode film. The sol-gel precursor is cooled to form a semi-hardened gel. The mold film is peeled off from the counter electrode film. The semi-hardened gel is cooled to form a gel electrolyte film. The sealing film is provided on the counter film, with the gel electrolyte film being fitted in the pore of the sealing film. A working electrode film is crimped on the sealing film. The stacked films are thermocompression bonded, and a single electrochemical cell is produced by cutting.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: December 7, 2010
    Assignee: Sony Chemical & Information Device Corporation
    Inventor: Kouki Hatsuda
  • Patent number: 7825203
    Abstract: The present invention is directed to a catalyst system for synthesizing rubbery polymers, such as polybutadiene rubber, styrene-butadiene rubber, isoprene-butadiene rubber, or styrene-isoprene-butadiene rubber, that are amine functionalized and have a high trans or high vinyl microstructure. The catalyst system, in one embodiment, includes an organolithium amine compound, and one or more of (a) a group IIa metal salt of an amino glycol or a glycol ether, (b) an organoaluminum compound, or (c) an amine compound. The amine functionalized rubbery polymers can be utilized in tire tread rubbers where the rubbery polymers may provide desirable wear properties without substantially sacrificing other performance characteristic(s), e.g., traction properties.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: November 2, 2010
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Adel Farhan Halasa, Wen-Liang Hsu