Abstract: A liquid crystal display device including first and second substrates; a liquid crystal layer arranged between the first and second substrates; a plurality of pixel regions each surrounded by a signal line and a scanning line; a counter electrode arranged on the first substrate; and a pixel electrode arranged on the first substrate, the pixel electrode including a plurality of electrode branches, a plurality of slits formed between the electrode branches, and a protrusion protruding in a first direction in which the scanning line extends, wherein at least one of the slits extends in a second direction in which the signal line extends.
Abstract: A display panel including a first substrate, a second substrate, a display medium layer and a sealant is provided. The second substrate is assembled with the first substrate. The display medium layer is disposed between the first substrate and the second substrate. The sealant is disposed between the first substrate and the second substrate, surrounds the display medium layer and includes a continuous one-piece pattern, wherein the continuous one-piece pattern includes a first segment and a second segment, and a difference between a width of the first segment and a width of the second segment is greater than or equal to a third of the width of the second segment.
Abstract: Provided is a display module. The display module includes a first display panel including a first edge sealing region; a second display panel including a second edge sealing region, wherein the second display panel and the first display panel are disposed in a same layer and spliced with each other, and the second edge sealing region is abutted against the first edge sealing region; and a third display panel disposed on backlight sides of the first display panel and the second display panel, wherein both an orthographic projection of the first edge sealing region onto the third display panel and an orthographic projection of the second edge sealing region onto the third display panel fall within a display region of the third display panel; wherein the first display panel, the second display panel and the third display panel are all liquid-crystal display panels.
Abstract: A liquid crystal device includes: an element substrate; a counter substrate disposed opposite to the element substrate; a sealing material disposed between the element substrate and the counter substrate; and a liquid crystal layer disposed on an inner side of the sealing material and containing liquid crystal. The element substrate includes an alignment film configured to align the liquid crystal and an ion-adsorbing first adsorption film disposed in contact with the sealing material. The alignment film includes a first vapor-deposited film and a second vapor-deposited film disposed between the first vapor-deposited film and the liquid crystal layer. The second vapor-deposited film and the first adsorption film include a column of which a long axis direction intersects a thickness direction of the liquid crystal layer. A thickness of the first adsorption film is thicker than a thickness of the second vapor-deposited film.
Abstract: In an electro-optical device, a first opening and a second opening are provided in an interlayer insulating layer provided in a layer between a transistor and a scanning line, with a semiconductor layer interposed between the first opening and the second opening in plan view. A portion of a gate electrode is provided inside the first opening, and the gate electrode is electrically connected to the scanning line via the first opening. The second opening does not overlap with the gate electrode, and a portion of a first capacitance electrode of a capacitance element is provided in the second opening, the first capacitance electrode having light shielding properties. Therefore, the width of the scanning line can be made narrower than in a case in which the gate electrode and the scanning line are electrically connected to each other via both the first opening and the second opening.
Abstract: In an electro-optical device, a transistor includes a semiconductor layer extending in a second direction so as to overlap with a scanning line in plan view. A second contact hole for electrically connecting the scanning line with a gate electrode of the transistor is provided in a second interlayer insulating layer provided in a layer between the scanning line and the transistor. The second contact hole includes a first hole portion extending along the second direction on both sides of the semiconductor layer in plan view, and a second hole portion protruding from the first hole portion toward the semiconductor layer and extending along a first direction.
Abstract: According to an aspect of the invention, a display device includes: a first substrate including a display area and a non-display area, a second substrate opposing the first substrate, a liquid crystal layer disposed between the first substrate and the second substrate to overlap the display area, and a seal disposed between the first substrate and the second substrate to surround the liquid crystal layer. At least one corner of the seal projects toward the non-display area.
Type:
Grant
Filed:
August 4, 2020
Date of Patent:
May 16, 2023
Assignee:
Samsung Display Co., Ltd.
Inventors:
Hwan Young Jang, Na Hyeon Cha, Sun Kwun Son
Abstract: A touch display device includes a display panel, a conductive layer, an optical matching layer and a buffer layer. The display panel comprises a first substrate, a second substrate and a display medium layer. The first substrate comprises a first surface and a second surface, the second substrate is disposed opposite to the first substrate, and the display medium layer is disposed between the second surface of the first substrate and the second substrate. The conductive layer is disposed on the first surface of the first substrate, and comprises a plurality of sensing electrodes. The optical matching layer is disposed between the conductive layer and the first surface of the first substrate. The buffer layer with a thickness greater than or equal to 50 ? and less than or equal to 3000 ? is disposed between the optical matching layer and the first surface of the first substrate.
Abstract: A liquid crystal display panel includes an array substrate, a color filter substrate, a plurality of pad structures disposed between the array substrate and the color filter substrate, a display area, and a light transmissive functional area. The pad structures are correspondingly disposed on the display area. The display area includes a predetermined area disposed at a periphery of the light transmissive functional area, and a thickness of each of the pad structures disposed on the predetermined area gradually decreases along a direction from the predetermined area to the light transmissive functional area.
Type:
Grant
Filed:
August 21, 2019
Date of Patent:
May 9, 2023
Assignee:
Wuhan China Star Optoelectronics Technology Co., Ltd.
Abstract: A transmittance-variable film and a use thereof, where the transmittance-variable film can control pretilt of a liquid crystal interface by applying a liquid crystal alignment film containing splay oriented liquid crystal molecules, and can vertically and horizontally orient a liquid crystal layer or a liquid crystal interface according to an average tilt angle of the liquid crystal alignment film to ensure uniformity of driving and fast response speed. In addition, by applying a liquid crystal alignment film, the transmittance-variable film can be implemented in various modes with a simple coating-drying-curing method excluding the rubbing process by controlling an arrangement of liquid crystal molecules in a liquid crystal alignment film other than the pretilt control method using the conventional rubbing method.
Type:
Grant
Filed:
October 18, 2017
Date of Patent:
March 28, 2023
Inventors:
Jung Woon Kim, Su Young Ryu, Moon Soo Park, Byoung Kun Jeon, Sin Young Kim, Ji Youn Lee
Abstract: An anti-stress liquid crystal display structure and a manufacturing method are provided. The anti-stress liquid crystal display structure includes a first substrate, a plurality of thin film transistors, a second substrate, a plurality of pillar-shaped supporting elements, and a liquid crystal layer. The plurality of thin film transistors have a protection layer and include at least one first protruding part and at least one first concave part. One end of each of the pillar-shaped supporting elements is connected to the second substrate, and other end of each of the pillar-shaped supporting elements includes at least one second protruding part and at least one second concave part and is disposed on the protection layer of each of the thin film transistors. The liquid crystal layer is disposed between the first substrate and the second substrate.
Type:
Grant
Filed:
December 24, 2019
Date of Patent:
March 21, 2023
Assignee:
TCL CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
Abstract: A display panel structure includes an array substrate, a color filter substrate, and a liquid crystal layer. The array substrate includes a bonding area and a reinforcing device disposed between the bonding area and an edge of the array substrate. An adhesive layer is disposed on a surface of the reinforcing device corresponding to the array substrate. The reinforcing device provided as a dual reinforcing structure formed by the reinforcing glue, the retaining wall, and the base to effectively enhance structural strength around the bonding area of the array substrate.
Type:
Grant
Filed:
September 30, 2019
Date of Patent:
March 21, 2023
Assignee:
WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
Abstract: A color filter (CF) substrate, a manufacturing method thereof, a display panel, a display device and an operation method thereof are provided. The CF substrate includes: a base substrate, a CF pixel array and image sensors. The CF pixel array is provided on the base substrate and includes CF pixel units in an array. The image sensors are provided on the CF pixel array, correspond to the CF pixel units, and are configured to receive light travelling through the CF pixel units for imaging.
Abstract: A thin film transistor, an array substrate and a display device. The thin film transistor includes a gate electrode, a first electrode, and a second electrode on the base substrate. The gate electrode includes a first body portion and a first extension portion extending along the first direction, electrically connected with the first body portion, and spaced apart from the first body portion by a first spacing. The first electrode includes a first overlapping end, an orthographic projection of the first overlapping end on the base substrate at least partially overlaps with an orthographic projection of the first body portion on the base substrate; a first compensation end at a side of the first overlapping end away from the first body portion; and a first intermediate portion connecting the first overlapping end and the first compensation end.
Abstract: A display substrate includes a base substrate and a plurality of insulating layers disposed on a surface of the base substrate. A groove is defined in the insulating layers in a non-display area of the display substrate. An end portion of an alignment layer is disposed in the groove. The groove is capable of controlling a flow of a liquid alignment material to prevent the liquid alignment material from overflowing to an edge of the base substrate. The groove is formed simultaneously in a process of forming contact holes in a display area of the display substrate. Accordingly, a structure corresponding to the end portion of the alignment layer to control the flow of the liquid alignment material is formed without increasing the number of masks.
Abstract: An electronic device is provided. The electronic device includes a substrate, a driving circuit disposed on the substrate, an active area disposed on the substrate, and a wiring group disposed on the substrate and between the driving circuit and the active area. The wiring group includes a first conductive line and a second conductive line. The first conductive line has a first section and a second section electrically connected to the first section and disposed between the first section and the active area. The second conductive line includes a third section and a fourth section electrically connected to the third section and disposed between the third section and the active area. The first section and the second section are not the same layer. The first section and the fourth section are the same layer. The second section and the third section are the same layer.
Abstract: A liquid crystal panel is provided and includes first and second substrates with liquid crystal layer therebetween; and first electrode in display region; second electrode disposed between first electrode and first substrate; and alignment film having alignment direction, wherein first electrode has: pair of electrode branches; slit between pair of electrode branches; first and second connections connecting pair of electrode branches; wherein first electrode has areas including first and second bent portions, main portion disposed between first and second bent portions, wherein first bent portion is adjacent to contact hole of first electrode, wherein first and second bent portions are bent relative to main portion, and wherein direction of first bent portion is substantially parallel to direction of second bent portion.
Abstract: According to one embodiment, a display device includes a first substrate, a second substrate, a liquid crystal layer including polymers and liquid crystal molecules, and a light-emitting element. The first substrate includes a transparent substrate, a scanning line, a signal line crossing the scanning line, a switching element electrically connected to the scanning line and the signal line, an organic insulating film overlapping the switching element, and a pixel electrode electrically connected to the switching element. A thickness of the organic insulating film located between the transparent substrate and the pixel electrode is less than a thickness of the organic insulating film overlapping the switching element.
Type:
Grant
Filed:
November 20, 2019
Date of Patent:
January 24, 2023
Assignee:
Japan Display Inc.
Inventors:
Kentaro Okuyama, Yoshihide Ohue, Hiroki Sugiyama, Tomoyuki Tada
Abstract: The invention relates to a display device comprising a display plane, on which one or more planar display regions 10, 11 are arranged, said planar regions 10, 11 being covered by transparent coverings. A single transparent covering 3 covers all the planar display regions 10, 11 of the display device, is formed three-dimensionally on the viewer's side by regions of differing thicknesses and is connected on the side facing away from the viewer to the planar display regions 10, 11 by means of optical bonding. The refractive index of the material of the covering 3 corresponds to the refractive index of the optical-bonding material 8.
Type:
Grant
Filed:
October 5, 2015
Date of Patent:
January 24, 2023
Assignee:
Continental Automotive GmbH
Inventors:
Jochen Moeller, Thomas Kaeppeler, Humberto Gonzalez
Abstract: Provided is a liquid crystal display device including: a liquid crystal panel; and a control circuit. The liquid crystal panel sequentially includes an active matrix substrate, a first alignment film, a liquid crystal layer containing liquid crystal molecules having a negative anisotropy of dielectric constant, a second alignment film aligning the liquid crystal molecules at an angle of 10° or greater and 30° or smaller, and a counter substrate. The active matrix substrate includes a first substrate, and a first electrode and a second electrode that are stacked via a first insulating layer or that face each other on the first substrate. The counter substrate sequentially includes a second substrate, a third electrode, a second insulating layer, and a fourth electrode. The control circuit is configured to switch between application of alternating voltage and application of constant voltage to the third and/or fourth electrode according to a display mode.