Patents Examined by Leon Scott, Jr.
  • Patent number: 6697408
    Abstract: This disclosure discusses techniques for obtaining wavelength selected simultaneously super pulsed Q-switched and cavity dumped laser pulses utilizing high optical damage threshold electro-optic modulators, maintaining a zero DC voltage bias on the CdTe electro-optic modulator (EOM) so as to minimize polarization variations depending on the location of the laser beam propagating through the CdSe EOM crystal, as well as the addition of one or more laser amplifiers in a compact package and the use of simultaneous gain switched, Q-switched and cavity dumped operation of CO2 lasers for generating shorter pulses and higher peak power for the hole drilling, engraving and perforation applications.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: February 24, 2004
    Assignee: Coherent, Inc.
    Inventors: John T. Kennedy, Richard A. Hart, Lanny Laughman, Joel Fontanella, Anthony J. Demaria, Leon A. Newman, Robert Henschke
  • Patent number: 6697392
    Abstract: A single wavelength laser module utilizes difference-frequency light and includes a first laser device for oscillating light having a first wavelength and a second laser device arranged parallel to the first laser device for oscillating light having a second wavelength, an optical waveguide device arranged next to the output ends of the first and the second laser device, and an output optical fiber arranged next to the output end of the optical waveguide device. The optical waveguide device includes a coupling waveguide region and an optical wavelength conversion region. The coupling waveguide region combines light having the first wavelength and the second wavelength into a single waveguide by being optically coupled directly to the first and the second laser device. The optical wavelength conversion region includes an optical waveguide for generating difference-frequency light between the first wavelength and the second wavelength.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: February 24, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Masato Ishino
  • Patent number: 6693931
    Abstract: The invention relates to an improved method and system for synchronizing signals in a particle accelerator system. In one embodiment, a method and system is disclosed whereby a phase of laser pulses are monitored, and a high-frequency signal is adjusted as necessary to be substantially in-phase with the laser pulses. In another embodiment, a method and system is disclosed whereby a phase of an electromagnetic field in an electron gun is monitored, and a high-frequency signal is adjusted as necessary to be substantially in-phase with the electromagnetic field.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: February 17, 2004
    Assignee: Vanderbilt University
    Inventors: Marcus H. Mendenhall, Gary R. Shearer
  • Patent number: 6693929
    Abstract: Optical chirped return-to-zero (CRZ) data signals are generated without the need for a separate phase modulator, by using a dual-drive Mach-Zehnder modulator for RZ pulse carving that is driven with two typically sinusoidal signals of either unequal amplitude or unequal relative phase, i.e. of non-vanishing phase difference.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: February 17, 2004
    Inventors: Rene'-Jean Essiambre, Peter J. Winzer
  • Patent number: 6693312
    Abstract: A photo-optical transmitter assembly is produced in the following manner: a glass wafer is fixed onto a transparent submount and a V-shaped recess is subsequently created between optical prism elements using targeted sawcuts. A rod-shaped element with a reflective coating is inserted into the V-shaped recess. A laser beam from a semiconductor laser is thus deflected by 90° on the rod-shaped element with the reflective coating and traverses the submount.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: February 17, 2004
    Assignee: Infineon Technologies AG
    Inventors: Ralf Dietrich, Mathias Kämpf, Wolfgang Gramann, Martin Weigert
  • Patent number: 6693940
    Abstract: A solid state laser, includes laser rod tubes (10, 117) crimped onto each end of a laser rod (15, 121) with PTFE seal rings (25, 118) compressed between the laser rod and the laser rod tube. The compressed seal rings provide an improved leak tight seal in a laser pumping chamber. Each laser rod tube (10) provides a mounting and holding area (20) for supporting the laser rod ends therein while protecting and sealing the end faces of the laser rod. A swaging tool (40) and method for swaging the laser rod tube (10) onto the laser rod (15) to provide a compression fit are provided. The compression seal and swaging method are usable in a variety of leak tight sealing applications.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: February 17, 2004
    Assignee: GSI Lumonics Ltd.
    Inventor: Glyn Edwards
  • Patent number: 6693922
    Abstract: The inventive rod includes a gain medium having first and second equal length portions sharing a common optical axis and an optical rotator disposed between said first and second portions which optical rotator compensates for birefringence. In an exemplary case, the optical rotator includes first and second waveplates optically coupled to one another and oriented with respect to one another by a predetermined angle, where the first waveplate receives a polarized beam having a first state, and the second waveplate produces the polarized beam having a second state, the first and second states differing from one another by 90°. Multiple rotators can be employed to compensate strongly birefringent rods, each rotator compensating a section of a rod constructed from a plurality of equal length optical gain elements.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: February 17, 2004
    Assignee: Raytheon Company
    Inventor: Robin A. Reeder
  • Patent number: 6693928
    Abstract: The method and system operate to calibrate a transmission laser of the dense wavelength division multiplexer (DWDM) and to lock the laser to a selected transmission wavelength. In one example, the transmission laser is a widely tunable laser (WTL) to be tuned to one of a set of International Telecommunications Union (ITU) transmission grid lines for transmission through an optic fiber. To lock the WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a set of transmission lines for detection by an etalon fringe detector. Another portion of the beam is routed directly to a laser wavelength detector. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam, then controls the WTL in a feedback loop to lock the laser to the etalon line.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: February 17, 2004
    Assignee: SpectraSensors, Inc.
    Inventor: Randy Dean May
  • Patent number: 6690689
    Abstract: The present invention provides a method and apparatus for compensating for the age induced wavelength drift in a tunable DBR. In practice, the tuning characteristic (i.e. output wavelength versus tuning current) of a tunable DBR may be characterized before and after factory aging, typically in the form of a burn-in or purge cycle. An aging vector may be constructed in accordance with the ratio of the change in the tuning characteristic associated with a second output wavelength and the change in the tuning characteristic associated with a first output wavelength as a function of the factory aging. In addition, the tuning characteristic associated with transmission at the first output wavelength may be monitored in the field.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: February 10, 2004
    Assignee: Triquint Technology Holding, Co.
    Inventors: David A. Ackerman, Eric J. Dean
  • Patent number: 6690705
    Abstract: A method for exciting chemical bonds in molecules using an electromagnetic field includes the step of generating a plurality of electromagnetic oscillation modes. The oscillation modes redistributing respective mode energies between themselves. Energy derived from the redistributed mode energies is used to impart energy to at least one pair of electrons comprising a chemical bond, thus exciting these electrons. The process can be used even when all electrons are paired. The method can be used for synthesizing compounds, quantum mechanical pumping of chemical bonds and for characterization of materials. An apparatus for exciting chemical bonds in molecules using an electromagnetic field includes a structure for generating a plurality of electromagnetic oscillation modes, the oscillation modes redistributing respective mode energies between themselves.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 10, 2004
    Assignee: Vector Enery Corporation
    Inventors: Aleksander Maksimov, Peter Novak
  • Patent number: 6690687
    Abstract: A semiconductor laser is provided having a cavity including a gain chip, a Mach-Zehnder wide tuning port, and a ring resonator mirror. Optical signals generated by the gain chip propagate through the Mach-Zehnder wide tuning port and into the ring resonator mirror where the optical signals are reflected back through the Mach-Zehnder wide tuning port to the gain chip. The ring resonator is configured to reflect only those optical signals back into the laser cavity having wavelengths within a set of sharp peaks and the laser cavity therefore can resonate only within one of the sharp peaks. The ring resonator mirror is heated to adjust its dimensions so as to maintain one of the sharp peaks at a selected emission wavelength. As optical signals reflected from the ring resonator pass through the Mach-Zehnder wide tuning port, the signals are split between two channels of differing lengths resulting in optical interference.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: February 10, 2004
    Assignee: SpectraSensors, Inc.
    Inventors: Alexander Ksendzov, Randy Dean May
  • Patent number: 6687267
    Abstract: A tunable laser having a tunable multi-mode interference (MMI) section is provided. The tunable laser also includes a gain section including an active waveguide, a phase section including a transparent waveguide, and a sampled grating section including a waveguide having a sampled Bragg grating written thereon or below. Each section is controlled via current injection. More specifically, the MMI section provides coarse tuning, the sampled grating section provides medium tuning, and the phase section provides fine tuning independence upon a current injected thereinto. The gain section provides optical gain. The configuration is relatively simple to control and easy to fabricate.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: February 3, 2004
    Assignee: JDS Uniphase Corporation
    Inventor: Heino Bukkems
  • Patent number: 6687283
    Abstract: A multi-beam source unit is disclosed wherein an arranged direction of light emitting points of a multi-beam laser diode relative to a horizontal scanning direction of a scanning optical system can be aligned with a predetermined standard design line.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: February 3, 2004
    Assignee: Ricoh Company, Ltd.
    Inventor: Yasuhiro Naoe
  • Patent number: 6687266
    Abstract: An organic light emitting device is provided. The device includes an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes material having the structure: M is a metal having an atomic weight greater than 40, m is at least 1, n is at least zero, R″ is H or any substituent, X is an ancillary ligand, and A is selected from the group consisting of aryl and heteroaryl rings, and B is an aryl ring. A material including the photoactive ligand of the above material is also provided.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: February 3, 2004
    Assignees: Universal Display Corporation, The University of Southern California
    Inventors: Bin Ma, David B. Knowles, Cory S. Brown, Drew Murphy, Mark E. Thompson
  • Patent number: 6687269
    Abstract: An apparatus including a cavity optical length actuator to vary a cavity optical path length of a laser in response to an excitation signal having varying frequencies. The cavity optical length actuator induces intensity perturbations in an optical beam of the laser corresponding to the excitation signal. A sensor senses the intensity perturbations in the optical beam and generates a response signal corresponding to the intensity perturbations. A combiner combines the excitation signal and the response signal to generate an error signal.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: February 3, 2004
    Assignee: Intel Corporation
    Inventors: Mark S. Rice, Andrew J. Daiber
  • Patent number: 6683711
    Abstract: A wavelength selective light source is disclosed. The wavelength selective light source comprises a broadband light source producing light having a plurality of wavelengths and a demultiplexer that receives the light and separates at least one of the plurality of wavelengths from said light. Further, a multiplexer is included for coupling the at least one of said plurality of wavelengths into an output waveguide. Finally, a semiconductor optical amplifier is provided that receives the at least one of the plurality of wavelengths from the output waveguide and amplifies the at least one of the plurality of wavelengths.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: January 27, 2004
    Assignee: Integrated Optics Communications Corporation
    Inventors: Jianjun Zhang, Peiching Ling, Jinliang Chen, Ming Xu
  • Patent number: 6683901
    Abstract: External-cavity optically-pumped semiconductor lasers (OPS-lasers) including an OPS-structure having a mirror-structure surmounted by a surface-emitting, semiconductor multilayer (periodic) gain-structure are disclosed. The gain-structure is pumped by light from diode-lasers. The OPS-lasers can provide fundamental laser output-power of about two Watts (2.0 W) or greater. Intracavity frequency-converted arrangements of the OPS-lasers can provide harmonic laser output-power of about one-hundred milliwatts (100 mW) or greater, even at wavelengths in the ultraviolet region of the electromagnetic spectrum. These high output powers can be provided even in single axial-mode operation.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: January 27, 2004
    Assignee: Coherent, Inc.
    Inventors: Andrea Caprara, Juan L. Chilla, Luis A. Spinelli
  • Patent number: 6680956
    Abstract: Methods and devices are provided for converting a fundamental wavelength of a fundamental beam generated by a surface-emitting diode laser having a first resonating cavity. According to some embodiments, a first nonlinear crystal disposed in a second resonating cavity external to first resonating cavity converts the fundamental beam to a first output beam having a first output wavelength different from the fundamental wavelength. Some embodiments include a second nonlinear crystal, which may be disposed in the second resonating cavity or in a third resonating cavity, for producing a second output beam having a second output wavelength different from the first output wavelength. In some such embodiments, the second nonlinear crystal converts the wavelength of the first output beam to produce the second output beam. In some embodiments, the second nonlinear crystal interacts with the first output beam and an infrared beam from another laser device to produce the second output beam.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: January 20, 2004
    Assignee: Aculight Corporation
    Inventors: David C. Gerstenberger, Mark S. Bowers
  • Patent number: 6678293
    Abstract: A device for stabilizing the operating wavelength (&lgr;) of an electro-optical component having a nominal operating wavelength (&lgr;0) by a wavelength influencing circuit adapted to be driven by a control signal. The device comprises a semiconductor photodiode adapted to be impinged upon by the radiation generated and/or processed by the component and to generate an output signal which is indicative of a difference of the wavelength of the radiation ((&lgr;) with respect to the nominal operating wavelength (&lgr;0, &lgr;i). The semiconductor photodiode includes a plurality of layers jointly defining two opposite diodes generating opposite photocurrents as a result of radiation impinging onto the photodiode. The opposite photocurrents are adapted to generate the control signal to effect the stabilization action.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: January 13, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Lorenzo Colace, Gianlorenzo Masini
  • Patent number: 6678291
    Abstract: An efficient F2 laser is provided with improvements in line selection, monitoring capabilities, alignment stabilization, performance at high repetition rates and polarization characteristics. Line selection is preferably provided by a transmission grating or a grism. The grating or grism preferably outcouples the laser beam. The line selection may be fully provided at the front optics module. A monitor grating and an array detector monitor the intensity of the selected (and unselected) lines for line selection control. An energy detector is enclosed in an inert gas purged environment at slight overpressure. A blue or green reference beam is used for F2 laser beam alignment stabilization and/or spectral monitoring of the output laser beam. The blue or green reference beam advantageously is not reflected out with a atomic fluorine red emission of the laser and is easily resolved from the red emission.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: January 13, 2004
    Assignee: Lambda Physik AG
    Inventors: Klaus Wolfgang Vogler, Juergen Kleinschmidt