Patents Examined by Leon Scott, Jr.
  • Patent number: 6570895
    Abstract: A passively cooled solid-state laser system for producing high-output power is set forth. The system includes an optics bench assembly containing a laser head assembly which generates a high-power laser beam. A laser medium heat sink assembly is positioned in thermal communication with the laser medium for conductively dissipating waste heat and controlling the temperature of the laser medium. A diode array heat sink assembly is positioned in thermal communication with the laser diode array assembly for conductively dissipating waste heat and controlling the temperature of the laser diode array assembly. The heat sink assemblies include heat exchangers with extending surfaces in intimate contact with phase change material. When the laser system is operating, the phase change material transitions from solid to liquid phase.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: May 27, 2003
    Assignee: Cutting Edge Optronics, Inc.
    Inventor: Geoffrey O. Heberle
  • Patent number: 6568105
    Abstract: An external cavity laser type light source including a light emitting element, a wavelength selection element for selecting a wavelength of light emitted from the light emitting element and for returning light to the light emitting element, and an optical branch element arranged between the light emitting element and the wavelength selection element. In the external cavity laser type light source, selected light sent from the wavelength selection element is branched by the optical branch element, and one branched component is taken out as output light.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: May 27, 2003
    Assignee: Ando Electric Co., Ltd.
    Inventor: Keisuke Asami
  • Patent number: 6567456
    Abstract: A novel dual-mirror mirror mount assembly for achieving polarization of a light beam in a gaseous laser is presented. The assembly includes a mirror mount structure open at one end and having a hollow cavity therein. A pair of mirrors are hard-sealed to the mirror mount structure. The first mirror is partially reflective and the second mirror is maximally reflective. The second mirror is arranged at a predetermined angle N with respect to the first mirror such that a light beam entering said mirror mount structure follows a beam path hitting the first mirror, reflecting off the first mirror and hitting the second mirror, and then retro-reflecting back on itself along the beam path of the entering light beam. The polarization function of a Brewster window is thus achieved without the use of an intra-cavity Brewster window.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: May 20, 2003
    Assignee: Research Electro-Optics, Inc.
    Inventor: Jon C. Sandberg
  • Patent number: 6567451
    Abstract: An excimer or molecular fluorine laser includes a discharge chamber filled with a gas mixture, multiple electrodes within the discharge chamber connected to a power supply circuit for energizing the gas mixture, and a resonator including the discharge chamber and a pair of resonator reflectors for generating an output laser beam. One of the resonator reflectors is an output coupling interferometer including a pair of opposing reflecting surfaces tuned to produce a reflectivity maximum at a selected wavelength for narrowing a linewidth of the output laser beam. One of the pair of opposing reflecting surfaces is configured such that the opposing reflecting surfaces of the interferometer have a varying optical distance therebetween over an incident beam cross-section which serves to suppress outer portions of the reflectivity maximum to reduce spectral purity.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: May 20, 2003
    Assignee: Lambda Physik AG
    Inventors: Juergen Kleinschmidt, Peter Lokai
  • Patent number: 6567433
    Abstract: A system and method is provided to calibrate a transmission laser, such as a widely tunable laser (WTL), within a dense wavelength division multiplexer (DWDM) for transmission through an optic fiber. The WTL is tuned to the ITU grid using an etalon and a gas cell. The absolute transmission wavelengths of the WTL are calibrated by routing a WTL output beam through the etalon and through the gas cell while varying tuning parameters of the WTL to generate an etalon spectrum and a gas absorption spectrum, both as functions of the tuning parameters. The etalon and gas absorption spectra are compared, along with input reference information specifying gas absorption as a function of absolute wavelength, to determine the absolute transmission wavelength for the WTL as a function of the tuning parameters. The WTL is then tuned to align the transmission wavelength of the WTL to an ITU transmission grid line.
    Type: Grant
    Filed: March 17, 2001
    Date of Patent: May 20, 2003
    Assignee: Tunable Photonics Corporation
    Inventor: Randy Dean May
  • Patent number: 6567431
    Abstract: A long wavelength infrared laser system is disclosed where radiation from laser sources such as frequency-doubled Nd:YAG or a Cr:LiSAF is used to resonantly pump a gain medium consisting of a holmium-doped fluoride crystal having a high active ion concentration. The laser pump source has a pulse duration that may be short enough to gain switch a particular transition or long enough to allow end-pumping with high energy densities without damage. The gain material has an absorption approximately resonant with the pump source wavelength, and the dopant concentration is selected to maximize absorption strength for a given excitation. The output radiation from the laser system consists of one or more wavelengths including, in particular 3.9 nm but also other infrared wavelengths such as 1.4 &mgr;m, 2.9 &mgr;m and 3.4 &mgr;m., several of which may be produced simultaneousely from the same laser material through the mechanism of cascade transitions.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: May 20, 2003
    Assignee: University of Central Florida
    Inventors: Anna M. Tabirian, Hans P. Jenssen, Scott Buchter, Hanna J. Hoffman
  • Patent number: 6567434
    Abstract: A laser system includes a travelling-wave active laser-resonator arranged for generating laser-radiation having a first wavelength and arranged such that the first-wavelength radiation circulates in only one direction therein. An optically-nonlinear element is positioned in the travelling-wave laser-resonator such that the first-wavelength radiation circulates therethrough. Radiation having a second-wavelength is injected into the optically-nonlinear crystal such that the first-wavelength radiation and second-wavelength radiation mix therein, thereby generating radiation having the sum-frequency of the first and second-wavelength radiations. The sum-frequency radiation from the optically-nonlinear element is delivered from the laser system as output-radiation. In one example, the travelling-wave resonator has a YVO4 gain medium generating radiation having a wavelength of about 1064 nm. The optically-nonlinear crystal is a CLBO crystal.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: May 20, 2003
    Assignee: Coherent, Inc.
    Inventors: Luis A. Spinelli, Briggs Atherton
  • Patent number: 6563853
    Abstract: An excimer or molecular fluorine laser system includes a discharge chamber containing a gas mixture, multiple electrodes connected to a power supply circuit for energizing the gas mixture, a resonator for generating a laser beam, a processor, and means for monitoring an amplified spontaneous emission (ASE) signal of the laser, such as preferably an ASE detector. The processor receives a signal from the preferred ASE detector indicative of the ASE signal of the laser. Based on the signal from the ASE detector, the processor determines whether to initiate a responsive action for adjusting a parameter of the laser system.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: May 13, 2003
    Assignee: Lambda Physik AG
    Inventors: Peter Heist, Matthias Kramer, Juergen Kleinschmidt, Sergei Govorkov, Marcus Serwazi, Thomas Jünemann
  • Patent number: 6563845
    Abstract: The invention relates to an optical modulation device for coupling an entering radiation field (12), with which an incident radiation field (40) is divided into a transmitted branch (40T) and a diffracted branch (40B) by means of a first acousto-optical modulation and a diffracted and a transmitted branch are respectively generated by means of a second acousto-optical modulation so that the transmitted branch (40BUT) resulting from the deflected diffracted branch (40BU) and the diffracted branch (40TUB) resulting from the deflected transmitted branch (40TU) propagate in approximately the same direction and form a first radiation field (46) as a result of essentially constructive interference and, in addition, the transmitted branch (40TUT) resulting from the deflected transmitted branch (40TU) and the diffracted branch (40BUB) resulting from the deflected diffracted branch (40BU) propagate in the same direction and form a second radiation field (48) as a result of essentially destructive interference.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: May 13, 2003
    Assignee: Haas-Laser GmbH + Co. KG
    Inventor: Malte Kumkar
  • Patent number: 6560254
    Abstract: An excimer or molecular fluorine laser includes a gain medium surrounded by a resonator and including a line-narrowing module preferably including a prism beam expander and one or more etalons and/or a grating or grism within the resonator. The material of transmissive portions of the line-narrowing module including the prisms and the plates of the etalons comprises a material having an absorption coefficient of less than 5×10−3/cm at 248 nm incident radiation, less than 10×10−3/cm at 193 nm incident radiation, and less than 0.1/cm at 157 nm. Preferably the material also has a thermal conductivity greater than 2.0 W/m° C.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: May 6, 2003
    Assignee: Lambda Physik AG
    Inventor: Uwe Stamm
  • Patent number: 6560246
    Abstract: A laser arrangement comprising a ring cavity at least two gain portions in said ring cavity, an input-output coupling connected to said ring cavity, a discriminator means connected in said ring cavity and adapted to discriminate between a pumping signal and an output signal and pumping means for providing said pumping signal and connected to said gain portions of said ring cavity such that, upon activation of said pumping means, said laser arrangement operates as a laser producing a laser output at said input-output coupling.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: May 6, 2003
    Assignee: The University of Sydney
    Inventors: Dmitrii Yu Stepanov, Ian M. Bassett, Gregory J. Cowle
  • Patent number: 6560257
    Abstract: A laser driver circuit includes an injection laser diode. A current source control loop circuit is connected to the injection laser diode and establishes a fixed current through the injection laser diode. A voltage switcher circuit is connected to the injection laser diode and current source control loop circuit and adapted to receive a fixed supply voltage and convert inductively the supply voltage down to a forward voltage to bias the injection laser diode and produce an optical fiber coupled laser output having minimized power losses.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: May 6, 2003
    Assignee: Harris Corporation
    Inventors: John DeSalvo, Michael Lange, Alan Williams
  • Patent number: 6560249
    Abstract: Laser source comprising a first active arm extending from a first end reflector up to a dispersing system grid and containing an amplifier medium that produces a first luminous beam. A second passive arm extends from the grid to a second end reflector, the grid generating a second beam by diffraction of the first beam, wherein the second end reflector closes the second passive arm and is partially reflecting to enable extraction of a luminous flux. An optical component produces, from the second beam, a third beam translated and antiparallel, to return to the grid which, by diffraction, forms a fourth beam translated and antiparallel to the first beam.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: May 6, 2003
    Assignee: Photonetics
    Inventors: Hervé Lefevre, Philippe Graindorge
  • Patent number: 6556613
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: April 29, 2003
    Assignee: Lambda Physik AG
    Inventors: Jürgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Görtler
  • Patent number: 6556599
    Abstract: An external cavity laser comprises a light source unit, preferably comprising a semiconductor light source having internal optical gain and a collimating lens, for supplying substantially collimated light to a retroreflector via an angle-tuned filter extending across an optical axis of the light source. The retroreflector is positioned so as to receive light from the light source via the angle-tuned filter and reflect the light via the angle-tuned filter back to the light source. The retroreflector may comprise a quarter pitch graded-index (GRIN) lens having a proximal end surface oriented towards the light source and a distal end surface opposite thereto, with a mirror provided on the distal end surface, preferably as a high-reflectance coating. The angle-tuned filter may be attached to the proximal end surface of the GRIN lens, preferably as a coating. The GRIN lens may be tilted in order to vary the angle of the filter relative to the optical axis and hence the wavelength.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: April 29, 2003
    Assignee: Bookham Technology plc
    Inventor: Mikelis Nils Svilans
  • Patent number: 6556595
    Abstract: Disclosed is a novel hybrid wiggler as a kind of insertion devices, for example, in an electron accelerator. Different from a conventional hybrid wiggler consisting of two oppositely facing arrays each formed of an alternate arrangement of a plurality of permanent magnet blocks and a plurality of pole pieces of a soft magnetic material to generate a sine-curved periodical magnetic field in the gap space between the arrays to cause meandering of electron beams, each of the pole pieces is sandwiched on the lateral surfaces with a pair of auxiliary permanent magnet blocks so that the periodical magnetic field generated in the gap space can be greatly strengthened.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: April 29, 2003
    Assignees: Shin-Etsu Chemical Co., Ltd., Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Hideki Kobayashi, Teruaki Tobita, Masayuki Kawai, Noriyuki Tsukino
  • Patent number: 6556608
    Abstract: A small format optoelectronic package or device includes a non-electrically conductive substrate partially covered by an electrically conductive can. The electrically conductive can has a transparent element affixed to an aperture of the electrically conductive can. The electrically conductive can encloses and hermetically seals an edge emitting optical diode, a reflecting mirror, a monitor diode, and conductors between the electrically conductive can and the non-electrically conductive substrate. The non-electrically conductive substrate has three through-holes formed through a thickness of the non-electrically conductive substrate. The three through-holes are filled with an electrically conductive material so as to form three electrically conductive vias. Additionally, a surface of the non-electrically conductive substrate is organized into three regions. The first and third regions have the electrically conductive plating material applied thereto.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: April 29, 2003
    Assignee: Stratos Lightwave, Inc.
    Inventors: Patrick B. Gilliland, Carlos Jines, Robert M. Dwarkin
  • Patent number: 6553051
    Abstract: An optical assembly includes an optical subassembly containing a prefabricated long wavelength laser optically coupled to a prefabricated short wavelength laser located in a housing. The optical subassembly may be removably installed in the housing in which the short wavelength laser is contained. The short wavelength laser optically pumps the long wavelength laser resulting in a long wavelength laser output. The optical subassembly allows the independent fabrication, optimization and testing of the short wavelength laser and the long wavelength laser.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: April 22, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Michael R. T. Tan, Scott W. Corzine, Dubravko I. Babic, Albert T. Yuen
  • Patent number: 6553050
    Abstract: An excimer or molecular fluorine laser includes a discharge chamber filled with a gas mixture, multiple electrodes within the discharge chamber connected to a power supply circuit for energizing the gas mixture, and a resonator including the discharge chamber and a pair of resonator reflectors for generating an output laser beam. The resonator includes an interferometric device, which may be a resonator reflector such as an output coupling interferometer or HR reflector, or a transmissive intracavity component, including a pair of opposing reflecting surfaces tuned to produce a response maximum at a selected wavelength for narrowing a linewidth of the output laser beam. One of the pair of opposing reflecting surfaces is preferably configured such that the opposing reflecting surfaces of the interferometer have a varying optical distance therebetween over an incident beam cross-section which serves to suppress at least one side band or outer portions of the response maximum to reduce spectral purity.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: April 22, 2003
    Assignee: Lambda Physik AG
    Inventors: Juergen Kleinschmidt, Peter Lokai
  • Patent number: 6549548
    Abstract: A wavelength measurement system uses birefringent material waveplate, thereby producing a substantially sinusoidal spectral response. As a result, the responses of multiple birefringent filters can be combined to yield a filter system with a periodic frequency response that has an additive wavelength resolution that is spectrally stable. That is, the wavelength measurement system does not have regions where wavelength resolution is degraded. In one implementation, a waveplate system 112 is used, placed between two blocks of birefringent material 110 and 114. A quadrant detector 116 is used to detect the intensities of the resulting four beams.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: April 15, 2003
    Assignee: Axsun Technologies, Inc.
    Inventors: Mark E. Kuznetsov, Peter S. Whitney, Dale C. Flanders