Patents Examined by Lindsey G. Wehrheim
  • Patent number: 10993674
    Abstract: The present disclosure provides systems and methods for classifying signals of interest in a cardiac rhythm management (CRM) device. A CRM device includes an intrinsic activation sensing circuit configured to pass signals falling within a first passband, a crosstalk sensing circuit configured to pass signals falling within a second passband, wherein the second passband contains higher frequencies than the first passband, and a computing device communicatively coupled to the intrinsic activation sensing circuit and the crosstalk sensing circuit, the computing device configured to classify a signal of interest as one of an intrinsic activation signal and a crosstalk signal based on whether the signal of interest is passed by the intrinsic activation sensing circuit and the crosstalk sensing circuit.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 4, 2021
    Assignee: PACESETTER, INC.
    Inventors: Matthew G. Fishler, Gene A. Bornzin, Benjamin T. Persson, Kenneth J. Carroll
  • Patent number: 10993675
    Abstract: Presented are concepts for monitoring a physical or mental capability of a person. One such concept employs the step of detecting a value of a property of the person or an object manipulated by the person. A trend in a physical or mental capability of the person may then be determined based on the detected value and historical data relating to one or more previously detected values of the property.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: May 4, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Warner Rudolph Theophile Ten Kate
  • Patent number: 10987058
    Abstract: Systems and methods are provided for optimizing hemodynamics within a patient. Specifically, the system incorporates invasive sensor data (e.g., pressure measurements) combined with mechanisms to dynamically change the loading conditions of the heart and/or heart rate, in order to understand hemodynamic parameters. Computational analyses on dynamic sensor data are used to understand and guide heart rate, filling pressures, and/or volume resuscitation in critically ill patients. By pacing the heart or inducing tricuspid regurgitation, the system may cause dynamic changes in sensor data to understand optimal loading conditions and heart rates. While determining optimal hemodynamic parameters, the system may then automatically optimize the heart rate and/or filling pressures in critically ill patients.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: April 27, 2021
    Assignee: CARDIOFLOW TECHNOLOGIES, LLC
    Inventor: Daniel Walter Kaiser
  • Patent number: 10981009
    Abstract: A medical device comprises therapy delivery circuitry and processing circuitry. The therapy delivery circuitry is configured to deliver anti-tachycardia pacing (ATP) therapy to a heart of a patient. The ATP therapy includes one or more pulse trains and each of the one or more pulse trains includes a plurality of pacing pulses. The processing circuitry is configured to, for at least one of the plurality of pacing pulses of at least one of the one or more pulse trains, determine at least one latency metric of an evoked response of the heart to the pacing pulse. The processing circuitry is further configured to modify the ATP therapy based on the at least one latency metric.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: April 20, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Troy E. Jackson, Vincent P. Ganion
  • Patent number: 10981004
    Abstract: The present disclosure refers to systems for electrical neurostimulation of a spinal cord of a subject in need of nervous system function support. In one example, a system comprises a signal processing device configured to receive signals from the subject and operate signal-processing algorithms to elaborate stimulation parameter settings; one or more multi-electrode arrays suitable to cover a portion of the spinal cord of the subject; and an Implantable Pulse Generator (IPG) configured to receive the stimulation parameter settings from the signal processing device and simultaneously deliver independent current or voltage pulses to the one or more multiple electrode arrays, wherein the independent current or voltage pulses provide multipolar spatiotemporal stimulation of spinal circuits and/or dorsal roots. Such system advantageously enables effective control of nervous system functions in the subject by stimulating the spinal cord, such as the dorsal roots of the spinal cord, with spatiotemporal selectivity.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: April 20, 2021
    Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)
    Inventors: Jocelyne Bloch, Grégoire Courtine, Nikolaus Wenger, Silvestro Micera, Marco Capogrosso
  • Patent number: 10974055
    Abstract: Circuitry useable to protect and reliably charge a rechargeable battery, even from a zero-volt state, is disclosed, and is particularly useful when employed in an implantable medical device. The circuit includes two charging paths, a first path for trickle charging the battery, and a second path for charging the battery at relatively higher currents. A passive diode is used in the first trickle-charging path which allows trickle charging even when the battery voltage is too low for reliable gating, while a gateable switch (preferably a PMOS transistor) is used in the second higher-current charging path when the voltage is higher and the switch can therefore be gated more reliably. A second diode between the two paths ensures no leakage to the substrate through the gateable switch during trickle charging. The load couples to the battery through the switch, and preferably through a second switch specifically used for decoupling the load.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Yuping He, David K. L. Peterson
  • Patent number: 10974057
    Abstract: An apparatus configured to control transmission of wireless energy supplied to an electrically operable medical device adapted to be implanted in a mammal patient, is disclosed. The apparatus comprises an external energy source, an internal energy receiver located inside the patient and being adapted to receive the wireless energy, a stabilizing unit adapted to stabilize the wirelessly received energy in the electrically operable medical device, and a control unit comprising at least one of an internal control unit and an external control unit.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: April 13, 2021
    Inventor: Peter Forsell
  • Patent number: 10952610
    Abstract: A portable biological signal measurement/transmission system includes: a body unit; and at least one biological signal processing unit detachably connected to the body unit, and including a signal processor which processes a biological signal, the biological signal processing unit including a first transmitter which transmits the biological signal to the body unit when the biological signal processing unit is connected to the body unit.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: March 23, 2021
    Assignee: NIHON KOHDEN CORPORATION
    Inventors: Hirokazu Ogino, Takaya Arimitsu
  • Patent number: 10925507
    Abstract: Provided is a physiological information detection sensor capable of implementing miniaturization by substantially securing a creepage distance and an air distance (e.g., implementing defibrillation protection). The physiological information detection sensor includes: a plurality of first substrates arranged in multiple tiers; a second substrate; a first connecting portion that electrically connects adjacent first substrates to each other among the plurality of first substrates; and an insulating member. Each of the plurality of first substrates has a defibrillation protection resistor mounted thereon and electrically connected to a physiological information detection unit. The second substrate has a circuit mounted thereon to process physiological information input from the physiological information detection unit via the defibrillation protection resistor. The insulating member is disposed between adjacent first substrates among the plurality of first substrates.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: February 23, 2021
    Assignee: Nihon Kohden Corporation
    Inventors: Norihito Konno, Minori Hosoi
  • Patent number: 10930437
    Abstract: A medical device capacitor assembly can include a capacitor including a plurality of anodes and cathodes, wherein the capacitor has a first major face, a second major face opposite the first major face, and a third face extending between the first major face and the second major face. A first insulating film can be sized and shaped to assemble against the first major face, and can include a first set of flaps sized and shaped to cover at least a portion of the third face. A second insulating film sized and shaped to assemble against the second major face, and can include a second set of flaps sized and shaped to cover at least a portion of the third face.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: February 23, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Aaron Louis Floeter
  • Patent number: 10918870
    Abstract: A system and method of positioning an atrial pacing lead for delivery of a cardiac pacing therapy that includes sensing electrical activity of tissue of a patient from a plurality of external electrodes and determining a distribution of bi-atrial activation in response to the sensed electrical activity. A target site for delivering the atrial pacing therapy is adjusted based on a change in bi-atrial dyssynchrony that is determined in response to the determined distribution of bi-atrial activation, and placement of the atrial pacing lead for delivery of the atrial pacing therapy is determined in response to the adjusting.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: February 16, 2021
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Zhongping Yang
  • Patent number: 10912473
    Abstract: An apparatus includes analog-to-digital conversion (ADC) circuitry, digital processing logic, and digital-to-analog conversion (DAC) circuitry. The ADC circuitry is coupled to digitize multiple analog input signals so as to generate digital samples. The digital processing logic is configured to extract, from the digital samples, one or more first digital signals corresponding to a first selected subset of the analog input signals, and one or more second digital signals corresponding to a second selected subset of the analog input signals. The digital processing logic is further configured to output the one or more first digital signals to a digital medical instrument. The DAC circuitry is coupled to convert the one or more second digital signal into one or more analog output signals, and to output the one or more analog output signals to an analog medical instrument.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: February 9, 2021
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Assaf Govari, Andres Claudio Altmann
  • Patent number: 10912945
    Abstract: A filter feedthrough for an AIMD includes an electrically conductive ferrule. An insulator hermetically seals a ferrule opening with either a first gold braze, a ceramic seal, a glass seal or a glass-ceramic seal. At least one conductive pathway is hermetically sealed to and disposed through the insulator body in non-conductive relationship with the ferrule. A feedthrough capacitor includes at least one active and ground electrode plate disposed within a capacitor dielectric and electrically connected to a capacitor active metallization and a capacitor ground metallization, respectively. At least a first edge of the feedthrough capacitor extends beyond a first outermost edge of the ferrule. At least a second edge of the feedthrough capacitor does not extend beyond a second outermost edge of the ferrule, or said differently, the second edge is either aligned with or setback from the second outermost edge of the ferrule.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: February 9, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Jason Woods
  • Patent number: 10905888
    Abstract: A filter feedthrough for an AIMD includes ferrule with an insulator hermetically sealing a ferrule opening, both cooperatively separating a body fluid side from a device side. A first conductive pathway is hermetically sealed to and disposed through the insulator. A feedthrough capacitor is disposed on the device side and includes at least one active electrode plate disposed parallel and spaced from at least one ground electrode plate within a capacitor dielectric. A capacitor active metallization is electrically connected to the active electrode plate and is in non-electrically conductive relation with the ground electrode plate. A capacitor ground metallization is electrically connected to the ground electrode plate and is in non-electrically conductive relation with the active electrode plate. An anisotropic conductive layer is disposed on the device side. The anisotropic conductive layer electrically connects the capacitor active metallization to the first conductive pathway.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: February 2, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Keith W. Seitz, Brian P. Hohl, Marc Gregory Martino
  • Patent number: 10870008
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker and an extracardiac device. The extracardiac device is configured to analyze one or more QRS complexes of the patient's heart, determine whether fusion pacing is taking place, and, if not, to communicate with the leadless cardiac pacemaker to adjust intervals used in the CRT in order to generate desirable fusion of the pace and intrinsic signals. The extracardiac device may take the form of a subcutaneous implantable monitor, a subcutaneous implantable defibrillator, or other devices including wearable devices.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: December 22, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Kenneth M. Stein, Yinghong Yu, Scott J. Healy, John Morgan
  • Patent number: 10857377
    Abstract: The present disclosure relates to a method and a device for controlling a laser output. According to an embodiment, there are provided a method for controlling a laser output of a laser device, provided with a laser generator and a handpiece for radiating a laser generated at the laser generator onto a target, and a device performing the method. The method includes the steps of: measuring, by a plurality of distance sensors arranged along a circumference of one end of the handpiece from which the laser is outputted, distances between the plurality of distance sensors and the target; based on the distances between the distance sensors and the target, calculating an effective area which is a region of the target onto which the laser is really radiated; and increasing or reducing the laser output to radiate the laser onto the effective area with a predetermined energy density.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: December 8, 2020
    Assignee: Speclipse, Inc.
    Inventors: Sung Hyun Pyun, Wanki Min, Hyoung Soo Shin
  • Patent number: 10857033
    Abstract: Systems and methods for corneal laser ablation for primary vision correction include topographic guided ablation. A laser ablation pattern is derived at least in part from corneal topographic data and epithelial thickness data. The laser ablation pattern may limit post-surgical non-uniformity of the thickness of the epithelial layer.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: December 8, 2020
    Inventor: Manoj Motwani
  • Patent number: 10857032
    Abstract: Systems and methods for corneal laser ablation for primary vision correction include topographic guided ablation. A laser ablation pattern for removal of astigmatism is derived at least in part from corneal topographic data rather than manifest astigmatism. Laser ablation patterns for treatment of high order aberrations of the cornea may also be based on corneal topographic data. Spherical corrections may be based on manifest refraction, eye models, or wavefront aberrometry.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: December 8, 2020
    Inventor: Manoj Motwani
  • Patent number: 10850109
    Abstract: A programmer is configured to effect communication with, and programming of, an implantable medical device configured to deliver neurostimulation therapy. The programmer comprises a display, such as touch screen display, and a processor comprising memory and coupled to the display. An interface is coupled to the processor and configured to receive therapy settings data indicative of current therapy settings operative in the implantable medical device and any modifications made to the therapy settings by a patient. The processor is configured to determine if one or more therapy settings have been modified since the last interaction with the patient, and coordinate displaying of the current therapy settings, the one or more therapy settings modified by the patient, and a previous state of the one or more therapy settings modified by the patient on the display.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: December 1, 2020
    Assignee: Inspire Medical Systems, Inc.
    Inventors: John Rondoni, Quan Ni
  • Patent number: 10842998
    Abstract: Devices and methods for single therapy pulse (STP) therapy for tacharrythmia are disclosed. The STP therapy can be delivered from a far-field position to allow a “global” capture approach to pacing. Due to the global capture in STP, a series of pulses, which is indicative of conventional anti-tachycardia pacing (ATP) delivered by transvenous systems, becomes unnecessary. One to four pulses at most are needed for STP, and after delivery of the one to four pulses, therapy delivery can be interrupted to determine whether the previously delivered therapy has been successful.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: November 24, 2020
    Assignee: CAMERON HEALTH, INC.
    Inventors: James M. Keefe, Rick Sanghera