Patents Examined by Lois L Zheng
  • Patent number: 10801095
    Abstract: An aluminum alloy for casting shaped aluminum alloy parts may comprise alloying elements of silicon and chromium and may be formulated to develop a dispersion strengthened and precipitation strengthened microstructure via heat treatment. The aluminum alloy may be formulated to develop a microstructure including an aluminum matrix phase and a fine-grained AlCrSi dispersoid phase when subjected to a solution heat treatment. The aluminum alloy also may be formulated to develop a microstructure including one or more Cu-containing precipitate phases when subjected to an aging heat treatment.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: October 13, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Henry Zhan, Bin Hu
  • Patent number: 10792702
    Abstract: The invention relates to a method for producing a silane-modified silicate. In order to obtain optimal corrosion protection properties, a silane compound according to the invention is at least partially hydrolyzed and/or condensed in the presence of a silicate compound at a pH value greater than or equal to 8 and then a pH value less than or equal to 7 is set by adding acid. The invention further relates to an aqueous acidic passivation composition for metal substrate coated with the passivation composition.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: October 6, 2020
    Assignee: EWALD DÖRKEN AG
    Inventors: Melanie Müller, Marcel Roth, Ingo Klüppel
  • Patent number: 10774414
    Abstract: Disclosed is a method for surface treatment of a steel component, providing high resistance to wear and corrosion, including nitriding or nitrocarburising to form a compound layer with a thickness of at least 8 micrometers made up of iron nitrides having phases ? and/or ??, oxidizing to generate a layer of oxides with a thickness of 0.1-3 micrometers, and soaking in an impregnation bath during at least 5 minutes at room temperature, the bath being made up of at least 70 wt %, ±1%, of a solvent made up of a mixture of hydrocarbons formed by a C9 to C17 alkane fraction, 10 to 30 wt %, ±1%, of at least one paraffin oil formed by a C16 to C32 alkane fraction, and at least one additive such as a synthetic phenolic additive with a concentration of 0.01 to 3 wt %, ±0.1%.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: September 15, 2020
    Assignee: H.E.F.
    Inventors: Pierre-Louis Magdinier, Marie-Noelle Desbouche-Janny
  • Patent number: 10768092
    Abstract: A measurement system permits environmental, corrosion damage, and mechanical property measurements to assess protection properties of coatings. The system includes one or more multi-sensor panels, each multi-sensor panel having sensors for assessing coating barrier properties, free corrosion, and galvanic corrosion. Each multi-sensor panel is installed on a test rack that contains electronics for sensor excitation and sensor data acquisition throughout a corrosion test. Sensor data is collected, stored, and communicated to a base station. A network of multiple test racks can be supported by a base station to compare the performance of different coatings and material combinations simultaneously. The test racks can be used in accelerated atmospheric corrosion tests, outdoor test sites, or application service environments.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: September 8, 2020
    Assignee: Luna Innovations Incorporated
    Inventors: Fritz John Friedersdorf, Conrad Koenig Andrews, Paul Gordon Muskopf, Kathryn Beryl Ridder
  • Patent number: 10752980
    Abstract: A high fatigue strength aluminum alloy comprises in weight percent copper 3.0-3.5%, iron 0-1.3%, magnesium 0.24-0.35%, manganese 0-0.8%, silicon 6.5-12.0%, strontium 0-0.025%, titanium 0.05-0.2%, vanadium 0.20-0.35%, zinc 0-3.0%, zirconium 0.2-0.4%, a maximum of 0.5% other elements and balance aluminum plus impurities. The alloy defines a microstructure having an aluminum matrix with the Zr and the V in solid solution after solidification. The matrix has solid solution Zr of at least 0.16% after heat treatment and solid solution V of at least 0.20% after heat treatment, and both Cu and Mg are dissolved into the aluminum matrix during the heat treatment and subsequently precipitated during the heat treatment. A process for heat treating an Al—Si—Cu—Mg—Fe—Zn—Mn—Sr-TMs alloy comprises heat treating the alloy to produce a microstructure having a matrix with Zr and V in solid solution after solidification.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 25, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Mei Li, Jacob Wesley Zindel, Larry Alan Godlewski, Bita Ghaffari, Yang Huo, Carlos Engler-Pinto, Wei-jen Lai
  • Patent number: 10738383
    Abstract: Described herein is a method for substantially nickel-free phosphating of a metallic surface, wherein a metallic surface, optionally after cleaning and/or activation, is first treated with an acidic aqueous phosphating composition that includes zinc ions, manganese ions, and phosphate ions, and is optionally rinsed and/or dried, and is thereafter treated with an aqueous after-rinse composition that includes at least one kind of metal ion selected from the group consisting of the ions of molybdenum, copper, silver, gold, palladium, tin, antimony, titanium, zirconium, and hafnium and/or at least one polymer selected from the group consisting of the polymer classes of the polyamines, polyethyleneamines, polyanilines, polyimines, polyethyleneimines, polythiophenes, and polypryroles and also mixtures and copolymers thereof, with both the phosphating composition and the after-rinse composition being substantially nickel-free.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: August 11, 2020
    Assignee: Chemetall GmbH
    Inventors: Olaf Dahlenburg, Frank Hollmann, Lisa Schmeier
  • Patent number: 10704157
    Abstract: The present invention provides an aqueous treatment solution containing sulfate ions SO42? in a concentration greater than or equal to 0.01 mol/l, to treat sheet metal including a steel substrate coated on at least one face with a coating including at least zinc and magnesium to reduce blackening or tarnishing of the sheet metal during storage. The present invention also provides a sheet metal treated with a solution of this type.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: July 7, 2020
    Assignee: ARCELORMITTAL INVESTIGACIÓN Y DESARROLLO, S.L.
    Inventors: Daniel Chaleix, Christian Allely, Maxime Monnoyer, Pascale Feltin
  • Patent number: 10704128
    Abstract: Disclosed are high-strength aluminum alloys and methods of making and processing such alloys. The aluminum alloys described herein exhibit improved mechanical strength, deformability, and corrosion resistance properties. In addition, the aluminum alloys can be prepared from recycled materials. The aluminum alloy products prepared from the alloys described herein include precipitates to enhance strength, such as MgZn2/Mg(Zn,Cu)2, Mg2Si, and Al4Mg8Si7Cu2.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: July 7, 2020
    Assignee: NOVELIS INC.
    Inventors: Sazol Das, Hany Ahmed, Wei Wen
  • Patent number: 10669599
    Abstract: A decarburized self-piercing rivet is provided that can join dissimilar sheets of material while reducing the likelihood of forming cracks during the riveting process. The decarburized self-piercing rivet has requisite hardness and column strength to pierce the sheets of material and also has a ferrite layer that improves ductility and performance of the rivet. The increase ductility reduces the likelihood of cracks forming during the riveting process. A manufacturing process is also provided that austentizing and decarburizes the rivet simultaneously in a salt pot furnace to reduce the need for any post-austentizing localized heat treatments.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: June 2, 2020
    Assignee: Colorado School of Mines
    Inventors: Stephen N. Van Hall, Kip O. Findley
  • Patent number: 10648054
    Abstract: A method for producing high-strength galvanized steel sheets having excellent coating adhesion, workability and appearance. The method comprises hot rolling a slab comprising, by mass %, C: 0.05 to 0.30%, Si: 0.1 to 2.0% and Mn: 1.0 to 4.0%, then coiling the steel sheet into a coil at a specific temperature TC, and pickling the steel sheet, cold rolling the hot-rolled steel sheet resulting from the hot rolling, annealing the cold-rolled steel sheet resulting from the cold rolling under specific conditions, and galvanizing the annealed sheet resulting from the annealing in a galvanizing bath containing 0.12 to 0.22 mass % Al.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: May 12, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoichi Makimizu, Yoshitsugu Suzuki, Hideyuki Takahashi, Gentaro Takeda, Koichiro Fujita
  • Patent number: 10610929
    Abstract: Methods of removing oxygen from a metal are described. In one example, a method (100) can include forming a mixture (110) including a metal, a calcium de-oxygenation agent, and a salt. The mixture can be heated (120) at a de-oxygenation temperature for a period of time to reduce an oxygen content of the metal, thus forming a de-oxygenated metal. The de-oxygenation temperature can be above a melting point of the salt and below a melting point of the calcium de-oxygenation agent. The de-oxygenated metal can then be cooled (130). The de-oxygenated metal can then be leached with water and acid to remove by-products and obtain a product (140).
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: April 7, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Zhigang Zak Fang, Pei Sun, Yang Xia, Ying Zhang
  • Patent number: 10612869
    Abstract: A heat exchanger management system and a method of operating the heat exchanger management system. In one embodiment, the heat exchanger management system includes a memory and an electronic processor electrically connected to the memory and configured to operate one or more burners to transmit heat to a heat exchanger for a first period of time that deposits corrosive condensates on a passivation layer of the heat exchanger, deactivate the one or more burners for a second period of time, operate one or more blowers to move air across the heat exchanger at a temperature that evaporates the corrosive condensates on the passivation layer of the heat exchanger and increases an oxide thickness of the passivation layer on the heat exchanger, and reactivate the one or more burners after the second period of time.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: April 7, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Xiaobai Li, Alessandro Pecenko, Wolf Schmid, Gert-Jan Feberwee, Martin Rohaan
  • Patent number: 10604849
    Abstract: A method of producing a hot-stamped article includes: a forming process of heating a galvanized steel sheet (1) on which a galvanized layer (12) is formed and forming the heated galvanized steel sheet (1) by hot stamping; a removal process of irradiating, after the forming step, an oxide film (13) formed on a surface of the galvanized layer (12) with laser light to remove the oxide film (13); and a coating process of performing, after the removal process, a coating treatment on the galvanized steel sheet (1) formed by hot stamping.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: March 31, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeshi Kakita, Kohei Hisada
  • Patent number: 10590501
    Abstract: A method of treatment of a running ferrous alloy sheet containing at least one easily oxidized element is provided. The method includes a step of immersion of the sheet in a molten oxides bath. The molten oxides bath has a viscosity between 0.3.10?3 Pa·s and 3.10?1 Pa·s, the surface of the bath is contact with a non-oxidizing atmosphere, and the molten oxides are inert towards iron. The residence time of the running sheet in the bath is at least 1 s and the residues of oxides remaining on the surfaces of the sheet at the exit of the bath are eliminated. A treatment line of a ferrous alloy sheet for implementing the method, is provided. The treatment line includes a molten oxides bath having a viscosity between 0.3.10?3 and 3.10?1 Pa·s. The surface of the bath is contact with a non-oxidizing atmosphere, and the molten oxides are inert towards iron. Mechanical devices for eliminating the residues of molten oxides remaining on the surfaces of the ferrous alloy sheet are at the exit of the molten oxides bath.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: March 17, 2020
    Assignee: ARCELORMITTAL
    Inventors: Maiwenn Tifenn Soazig Larnicol, Michel Roger Louis Bordignon, Xavier Marc Jacques Edmond Robert Vanden Eynde, Ana Isabel Farinha, Pascal Gerkens, Jean-Francois Noville, Julien Christopher Michel Smal
  • Patent number: 10577703
    Abstract: A non alpha controlled plating bath including Tin species and a trace amount of Polonium species is utilized in a plating tool. The plating tool includes a Polonium filter element to remove Polonium species from the plating bath to selectively plate Tin upon a plating cathode. The filter may include a Titanium inner portion surrounding by a stannic oxide exterior. The filter may reduce the Polonium species by having the polonium absorb and then enter within the stannic oxide matrix. The filter may be located within the plating tool reservoir or filter housing. The filter may be fabricated by forming Tin upon a Titanium backbone and converting the Tin to stannic oxide.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: March 3, 2020
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Michael S. Gordon
  • Patent number: 10570472
    Abstract: A method of annealing of steel sheets is provided which includes a first step consisting in fully oxidizing the surface of such steel sheet thus creating a fully oxided surface layer, a second step consisting in selectively oxidizing elements other than iron of such steel, in an area extending under said fully oxided layer, thus creating a selectively oxided internal layer and a third step consisting in fully reducing said fully oxided surface layer.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: February 25, 2020
    Assignee: ArcelorMittal
    Inventors: John Rotole, Jonas Staudte, Jean-Michel Mataigne
  • Patent number: 10563317
    Abstract: Disclosed is a solution composition which may be used for a single-bath electrochemical passivation and a method using the same. The solution composition includes a metal cation, a metal-oxide anion; and an organic ligand, and optionally includes a non-metallic oxide anion or a polymer. The solution composition may prevent undesired precipitation of metal oxides before performing passivation. In addition, the method of passivation using the solution composition in a single-bath use is also provided.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: February 18, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Weilong Zhang, Michael A. Kryzman
  • Patent number: 10556040
    Abstract: Provided are surface-modified metals and methods for modifying a metal surface, which involve a lubricating surface layer chemically fixed to the metal surface to provide excellent lubricity and excellent lubricant durability, and further which have good productivity and good economic efficiency. Included is a surface-modified metal whose surface is at least partially provided with a treatment layer having a thickness of 50 to 800 nm, the treatment layer being formed by treating a surface of a metal with a silane coupling agent, followed by adsorbing a hydrogen abstraction type photopolymerization initiator onto the surface and then polymerizing a monomer.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: February 11, 2020
    Assignee: SUMITOMO RUBBER INDUSTRIES, LTD.
    Inventor: Yasuhisa Minagawa
  • Patent number: 10550478
    Abstract: A chromium-free conversion coating is prepared by the addition of inorganic metallic salts and one or more silanes to dispersions of conducting polymers which are then exposed to alloys of aluminum or other metals. Advantageously, the performance of the coating is comparable to that of conventional chromium-based methods for a number of aluminum alloys having particular significance in the manufacture of aircraft.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 4, 2020
    Assignee: The Boeing Company
    Inventors: Francisco Jesus Cano-Iranzo, Uxoa Izagirre-Etxeberria, Oihana Zubillaga-Alcorta, Patricia Santa Coloma-Mozo, Nieves Lapena-Rey
  • Patent number: 10550479
    Abstract: A method of thermally treating black plate which is coated with a conversion coating. The conversion-coated black plate is heated during a thermal treatment time from 0.1 seconds to 30 seconds to a temperature in the range of 240° C. to 320° C. The heat treatment makes it possible to improve the adhesion of the conversion coating to the black plate surface. In one application of the method, the heat treatment is carried out in a process for the production of corrosion-resistant black plate, in which prior to, during or after the heat treatment, an organic coating in the form of paint or a polymer coating is applied to the conversion coating of the black plate.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: February 4, 2020
    Assignees: THYSSENKRUPP RASSELSTEIN GMBH, THYSSENKRUPP AG
    Inventors: Andrea Marmann, Tanja Lommel, Reiner Sauer, Tatjana Kasdorf, Martin Schleich, Monika Malejczyk, Hans-Peter Rink