Patents Examined by Long H. Le
  • Patent number: 11201122
    Abstract: A trench is formed through a plurality of layers that are disposed over a first substrate. A first deposition process is performed to at least partially fill the trench with a first dielectric layer. The first dielectric layer delivers a tensile stress. A second deposition process is performed to form a second dielectric layer over the first dielectric layer. A third deposition process is performed to form a third dielectric layer over the second dielectric layer. The third dielectric layer delivers a first compressive stress.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: December 14, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsu Yen, Yu Chuan Hsu, Chen-Hui Yang
  • Patent number: 11195798
    Abstract: Conducting alloys comprising cobalt, tungsten, and boron and conducting alloys comprising nickel, tungsten, and boron are described. These alloys can, for example, be used to form metal interconnects, can be used as liner layers for traditional copper or copper alloy interconnects, and can act as capping layers. The cobalt-tungsten and nickel-tungsten alloys can be deposited using electroless processes.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: December 7, 2021
    Assignee: Intel Corporation
    Inventors: Yang Cao, Akm Shaestagir Chowdhury, Jeff Grunes
  • Patent number: 11177335
    Abstract: A display device includes a substrate including a display area and a peripheral area disposed outside of the display area. The display area includes a plurality of pixels. The display device further includes an inorganic insulating layer disposed in the display area. The inorganic insulating layer includes a groove disposed in a region between the plurality of pixels. The display device further includes an organic material layer filling the groove, a first connection wiring, and a second connection wiring. The first connection wiring is disposed on the organic material layer, overlaps the plurality of pixels, and extends in a second direction. The second connection wiring is insulated from the first connection wiring, and extends in a first direction that crosses the second direction.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: November 16, 2021
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Juchan Park, Sunho Kim, Younggug Seol, Sunhee Lee, Joosun Yoon, Jonghyuk Lee, Jonghyun Choi
  • Patent number: 11177204
    Abstract: An electronics package is disclosed herein that includes a glass substrate having an exterior portion surrounding an interior portion thereof, wherein the interior portion has a first thickness and the exterior portion has a second thickness larger than the first thickness. An adhesive layer is formed on a lower surface of the interior portion of the glass substrate. A semiconductor device having an upper surface is coupled to the adhesive layer, the semiconductor device having at least one contact pad disposed on the upper surface thereof. A first metallization layer is coupled to an upper surface of the glass substrate and extends through a first via formed through the first thickness of the glass substrate to couple with the at least one contact pad of the semiconductor device.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: November 16, 2021
    Assignee: General Electric Company
    Inventors: Arun Virupaksha Gowda, Paul Alan McConnelee, Nancy Cecelia Stoffel, Risto Ilkka Tuominen
  • Patent number: 11158614
    Abstract: An embodiment device includes a first die, a second die electrically connected to the first die, and a heat dissipation surface on a surface of the second die. The device further includes a package substrate electrically connected to the first die. The package substrate includes a through-hole, and the second die is at least partially disposed in the through hole.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Tsung-Ding Wang, Mirng-Ji Lii, Chien-Hsun Lee
  • Patent number: 11158659
    Abstract: A semiconductor device structure and method for forming the same are provided. The semiconductor device structure includes an interconnect structure formed over a substrate and a passivation layer formed over the interconnect structure. The semiconductor device structure also includes an anti-acid layer formed in the passivation layer and a bonding layer formed on the anti-acid layer and the passivation layer. The anti-acid layer has a thickness that is greater than about 140 nm.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yin-Shuo Chu, Chi-Chung Yu, Li-Yen Fang, Tain-Shang Chang, Yao-Hsiang Liang, Min-Chih Tsai
  • Patent number: 11152481
    Abstract: A method includes providing a substrate; forming a first structure over the substrate, the first structure including a first gate trench and a first channel exposed in the first gate trench; forming a second structure over the substrate, the second structure including a second gate trench and a second channel exposed in the second gate trench; depositing a gate dielectric layer covering surfaces of the first and second channels exposed in the respective first and second gate trenches; recessing the gate dielectric layer in the second gate trench to be lower than the gate dielectric layer in the first gate trench; and forming a gate electrode layer over the gate dielectric layer in the first and second gate trenches.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: October 19, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Wei-Sheng Yun, I-Sheng Chen, Shao-Ming Yu, Tzu-Chiang Chen, Chih Chieh Yeh
  • Patent number: 11152361
    Abstract: Techniques are disclosed for achieving multiple fin dimensions on a single die or semiconductor substrate. In some cases, multiple fin dimensions are achieved by lithographically defining (e.g., hardmasking and patterning) areas to be trimmed using a trim etch process, leaving the remainder of the die unaffected. In some such cases, the trim etch is performed on only the channel regions of the fins, when such channel regions are re-exposed during a replacement gate process. The trim etch may narrow the width of the fins being trimmed (or just the channel region of such fins) by 2-6 nm, for example. Alternatively, or in addition, the trim may reduce the height of the fins. The techniques can include any number of patterning and trimming processes to enable a variety of fin dimensions and/or fin channel dimensions on a given die, which may be useful for integrated circuit and system-on-chip (SOC) applications.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: October 19, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy
  • Patent number: 11152522
    Abstract: Disclosed is a semiconductor radiation detector assembly including a detector chip having a front side for receiving radiation and a back side; and a flexible substrate including a center portion having its front side attached to the back side of the detector chip and a plurality of strips extending from the center portion and bent to protrude away from the detector chip, wherein the flexible substrate includes a plurality of conductive tracks that extend on a surface of the strips from the center portion towards lateral ends of the strips for electrical coupling and mechanical attachment to one of a plurality of contact pins, and wherein the detector chip is electrically coupled to at least one of the conductive tracks.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: October 19, 2021
    Assignee: OXFORD INSTRUMENTS TECHNOLOGIES OY
    Inventor: Hans Andersson
  • Patent number: 11114531
    Abstract: A semiconductor device according to an embodiment includes a first electrode; a second electrode; a gate electrode; an n-type first silicon carbide region positioned between the first electrode and the second electrode and between the gate electrode and the second electrode; a p-type second silicon carbide region positioned between the first electrode and the first silicon carbide region; a third silicon carbide region of metal containing at least one element selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt), positioned between the first electrode and the second silicon carbide region and spaced apart from the first silicon carbide region; and a gate insulating layer positioned between the gate electrode and the second silicon carbide region.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: September 7, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Masayasu Miyata, Hirotaka Nishino, Yoshihiko Moriyama, Yuichiro Mitani
  • Patent number: 11114433
    Abstract: Provided is a three dimensional integrated circuit (3DIC) structure including a first die, a second die, and a hybrid bonding structure bonding the first die and the second die. The hybrid bonding structure includes a first bonding structure and a second bonding structure. The first bonding structure includes a first bonding dielectric layer and a first bonding metal layer. The first bonding metal layer is disposed in the first bonding dielectric layer. The first bonding metal layer includes a first via plug and a first metal feature disposed over the first via plug, wherein a height of the first metal feature is greater than or equal to a height of the first via plug. A method of fabricating the 3DIC structure is also provided.
    Type: Grant
    Filed: July 15, 2018
    Date of Patent: September 7, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Ming-Fa Chen
  • Patent number: 11101192
    Abstract: Disclosed herein is a device having an embedded heat spreader and method for forming the same. A carrier substrate may comprise a carrier, an adhesive layer, a base film layer, and a seed layer. A patterned mask is formed with a heat spreader opening and via openings. Vias and a heat spreader may be formed in the pattern mask openings at the same time using a plating process and a die attached to the head spreader by a die attachment layer. A molding compound is applied over the die and heat spreader so that the heat spreader is disposed at the second side of the molded substrate. A first RDL may have a plurality of mounting pads and a plurality of conductive lines is formed on the molded substrate, the mounting pads may have a bond pitch greater than the bond pitch of the die contact pads.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: August 24, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Sen Chang, Tsung-Hsien Chiang, Yen-Chang Hu, Ching-Wen Hsiao
  • Patent number: 11075171
    Abstract: A fan-out semiconductor package includes a core member having a through hole, at least one dummy structure disposed in the core member, a semiconductor chip disposed in the through hole and including an active surface on which a connection pad is disposed and an inactive surface opposing the active surface, an encapsulant sealing at least a portion of each of the core member and the semiconductor chip, and filling at least a portion of the through hole, and a connection member disposed on the core member and the active surface of the semiconductor chip, and including a redistribution layer electrically connected to the connection pad.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 27, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jung Soo Kim
  • Patent number: 11069845
    Abstract: A light emitting device includes a substrate extending in a first direction and a second direction, first through fourth light emitting structures spaced apart from each other in the first and second direction and arranged in a matrix form on the substrate, a plurality of first interconnection layer structures connecting the first light emitting structure to the second light emitting structure, a second interconnection layer structure connecting the second light emitting structure to the third light emitting structure, and a plurality of third interconnection layer structures connecting the third light emitting structure to the fourth light emitting structure.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: July 20, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Min-gu Ko, Jung-hee Kwak, Young-ho Ryoo, Seong-seok Yang, Sang-seok Lee, Seung-wan Chae
  • Patent number: 11069772
    Abstract: Aspects of the present disclosure are directed toward designs and methods of manufacturing semiconductor devices, such as semiconductor charge balanced (CB) devices or semiconductor super-junction (SJ) devices. The disclosed designs and methods are useful in the manufacture of CB devices, such as planar CB metal-oxide semiconductor field-effect transistor (MOSFET) devices, as well as other devices.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 20, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stephen Daley Arthur, Reza Ghandi, Alexander Viktorovich Bolotnikov, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 11063039
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a first source region, a second source region, a first drain region, and a second drain region. The semiconductor device structure includes a first gate structure over the substrate and between the first source region and the first drain region. The semiconductor device structure includes a second gate structure over the substrate and between the second source region and the second drain region. A first thickness of the first gate structure is greater than a second thickness of the second gate structure. A first gate width of the first gate structure is less than a second gate width of the second gate structure.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cong-Min Fang, Chih-Lin Wang, Kang-Min Kuo
  • Patent number: 11049852
    Abstract: A semiconductor controlled rectifier (FIG. 4A) for an integrated circuit is disclosed. The semiconductor controlled rectifier comprises a first lightly doped region (100) having a first conductivity type (N) and a first heavily doped region (108) having a second conductivity type (P) formed within the first lightly doped region. A second lightly doped region (104) having the second conductivity type is formed proximate the first lightly doped region. A second heavily doped region (114) having the first conductivity type is formed within the second lightly doped region. A buried layer (101) having the first conductivity type is formed below the second lightly doped region and electrically connected to the first lightly doped region. A third lightly doped region (102) having the second conductivity type is formed between the second lightly doped region and the third heavily doped region.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: June 29, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Akram A. Salman, Farzan Farbiz, Amitava Chatterjee, Xiaoju Wu
  • Patent number: 11031436
    Abstract: A display device includes a substrate, a pixel area, and a plurality of data lines. The substrate includes display and non-display areas. The pixel area is in the display area and includes a first pixel column and a second pixel column. The pixels in the first and second columns emit light of different colors. The data lines are respectively coupled to the first pixel column and the second pixel column. In the non-display area, a data line is coupled to one of the first or second pixel columns corresponding to a color on which influence of a resistance is greater than on another color. The data lines has a line or contact structure with a resistance less than a resistance of a line or contact structure of a remaining data line coupled to a remaining pixel column.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: June 8, 2021
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sun Ja Kwon, Won Kyu Kwak, Hwan Soo Jang, Seung Yeon Cho, Hyun Ae Park
  • Patent number: 11031294
    Abstract: In a method of manufacturing a semiconductor device, an isolation region is formed in a substrate, such that the isolation region surrounds an active region of the substrate in plan view. A first dielectric layer is formed over the active region. A mask layer is formed on a gate region of the first dielectric layer. The gate region includes a region where a gate electrode is to be formed. The mask layer covers the gate region, but does not entirely cover the first dielectric layer. The first dielectric layer not covered by the mask layer is removed such that a source-drain region of the active region is exposed. After that, the mask layer is removed. A second dielectric layer is formed so that a gate dielectric layer is formed. The gate electrode is formed over the gate dielectric layer.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Han Lin, Chih-Ren Hsieh, Chen-Chin Liu
  • Patent number: 11004756
    Abstract: A semiconductor device includes: a base plate; a semiconductor chip mounted on the base plate; a case surrounding the semiconductor chip on the base plate; an electrode terminal connected to the semiconductor chip; a sealing material covering an upper face of the base plate, the semiconductor chip and a part of the electrode terminal in the case; and a lid fastened to the case above the sealing material, wherein the electrode terminal is not exposed on an upper face of the sealing material, and there is a gap between the upper face of the sealing material and a lower face of the lid.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: May 11, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kota Ohara, Manabu Matsumoto, Yoshitaka Otsubo