Patents Examined by Luz L. Alejandro
  • Patent number: 8216421
    Abstract: A plasma technique in which a plasma generation technique frequently used in various fields including a semiconductor manufacturing process is used, and generation of plasma instability (high-speed impedance change of a plasma) can efficiently be suppressed and controlled in order to manufacture stable products. In a method of disposing an object in a chamber and generating the plasma to treat the object, the chamber is sealed by a surrounding member so as to have an inner space, with at least a part of the member including a dielectric material, an RF induction coil is disposed outside the dielectric member, and a direct-current electric field is supplied into the inner space by a method of passing a direct current through the RF induction coil or another method, so that the plasma is stabilized.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: July 10, 2012
    Assignee: Lam Research Corporation
    Inventors: Takumasa Nishida, Shu Nakajima
  • Patent number: 8187416
    Abstract: An antenna for coupling RF energy to a plasma in a process chamber having a wall comprises a coil having a face exposed to the plasma in the chamber. A plurality of standoffs support the coil at a set spacing from the wall of the process chamber, at least one standoff comprising a terminal thorough which electrical power is applied to the coil from an external power source. The terminal comprises a conductor receptacle having a first length L1 and a jacket around the conductor receptacle, the jacket having a second length L2. The length L1 is larger than the length L2. A conductor cup is provided about the standoff having the terminal.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: May 29, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Keith A. Miller, Genhua Xu, Shengde Zhong, Mahendra Bhagwat Lokhande
  • Patent number: 8177992
    Abstract: In one embodiment, a method of removing film materials on an edge area of a substrate in a plasma etching apparatus is disclosed. The apparatus includes a chamber, a substrate support, a shield disposed with a gap on the substrate such that plasma is not generated therein while allowing an edge portion of the substrate to be exposed, and an antenna disposed on an outer wall of the chamber to apply plasma-generating power to an area between the edge portion of the substrate and an inner wall of the chamber. The method includes spraying a curtain gas to a space between the shield and the substrate, using a curtain gas passageway; and spraying a reaction gas to an area between a side surface of the shield and an inner sidewall of the chamber formed within the shield, using a reaction gas supply passageway.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: May 15, 2012
    Assignee: Jusung Engineering Co., Ltd.
    Inventor: Bu-Il Jeon
  • Patent number: 8163128
    Abstract: A plasma processing apparatus includes a chamber for containing a substrate to be processed, a gas supply unit for supplying a processing gas into the chamber, and a microwave introducing unit for introducing plasma generating microwaves into the chamber. The microwave introducing unit includes a microwave oscillator for outputting a plurality of microwaves having specified outputs, and an antenna section having a plurality of antennas to which the microwaves outputted from the microwave oscillator are respectively transmitted.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: April 24, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Shigeru Kasai, Yuki Osada, Takashi Ogino
  • Patent number: 8157976
    Abstract: Apparatus for cathodic vacuum-arc coating deposition. The apparatus includes a mixing chamber, at least one input duct projecting from a first end wall of the mixing chamber, and an output duct projecting from a second end wall of the mixing chamber. Coupled with each input duct is a plasma source adapted to discharge an ion flow of a coating material into the mixing chamber, which is subsequently directed to the output duct. A first solenoidal coil disposed about a side wall of the mixing chamber creates a first magnetic field inside the mixing chamber for steering the ion flow. A second solenoidal coil is disposed adjacent to the first end wall and aligned substantially coaxially with the output duct. The second solenoidal coil creates a second magnetic field inside the mixing chamber for steering the first ion flow. The electrical currents flow through the first and second solenoidal coils in opposite solenoidal directions.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: April 17, 2012
    Assignee: Veeco Instruments, Inc.
    Inventors: Boris Druz, Ivan I. Aksenov, Olexandr A. Luchaninov, Volodymyr E. Strelnytskiy, Volodymyr V. Vasylyev, Isaak Zaritskiy, Piero Sferlazzo
  • Patent number: 8142607
    Abstract: An ion source, capable of generating high density wide ribbon ion beam, utilizing one or more helicon plasma sources is disclosed. In addition to the helicon plasma source(s), the ion source also includes a diffusion chamber. The diffusion chamber has an extraction aperture oriented along the same axis as the dielectric cylinder of the helicon plasma source. In one embodiment, dual helicon plasma sources, located on opposing ends of the diffusion chamber are used to create a more uniform extracted ion beam. In a further embodiment, a multicusp magnetic field is used to further improve the uniformity of the extracted ion beam.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: March 27, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Costel Biloiu, Alexander Perel, Jay Scheuer
  • Patent number: 8123902
    Abstract: A method and apparatus for providing flow into a processing chamber are provided. In one embodiment, a vacuum processing chamber is provided that includes a chamber body having an interior volume, a substrate support disposed in the interior volume and a gas distribution assembly having an asymmetrical distribution of gas injection ports. In another embodiment, a method for vacuum processing a substrate is provided that includes disposing a substrate on a substrate support within in a processing chamber, flowing process gas into laterally into a space defined above a gas distribution plate positioned in the processing chamber over the substrate, and processing the substrate in the presence of the processing gas.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: February 28, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Paul Brillhart, Daniel J. Hoffman, James D. Carducci, Xiaoping Zhou, Matthew L. Miller
  • Patent number: 8123903
    Abstract: A plasma reactor includes a chamber in which a wafer is treated by a plasma reaction, the chamber being provided at an upper portion with a cylindrical dielectric window, a multiple antenna structure disposed on upper and lower portions of the dielectric window to generate RF magnetic field and apply the RF magnetic field inside the chamber through the dielectric window, thereby generating RF electric field, and an RF electric power supply unit for allowing for a time variation of the magnetic field of the multiple antenna structure.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: February 28, 2012
    Assignee: DMS Co., Ltd.
    Inventor: Weon-Mook Lee
  • Patent number: 8119532
    Abstract: A dual zone plasma processing chamber is provided. The plasma processing chamber includes a first substrate support having a first support surface adapted to support a first substrate within the processing chamber and a second substrate support having a second support surface adapted to support a second substrate within the processing chamber. One or more gas sources in fluid communication with one or more gas distribution members supply process gas to a first zone adjacent to the first substrate support and a second zone adjacent to the second substrate support. A radio-frequency (RF) antenna adapted to inductively couple RF energy into the interior of the processing chamber and energize the process gas into a plasma state in the first and second zones. The antenna is located between the first substrate support and the second substrate support.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: February 21, 2012
    Assignee: Lam Research Corporation
    Inventor: Sanket P. Sant
  • Patent number: 8114246
    Abstract: A vacuum plasma processor includes a roof structure including a dielectric window carrying (1) a semiconductor plate having a high electric conductivity so it functions as an electrode, (2) a hollow coil and (3) at least one electric shield. The shield, coil and semiconductor plate are positioned to prevent substantial coil generated electric field components from being incident on the semiconductor plate. During a first interval the coil produces an RF electromagnetic field that results in a plasma that strips photoresist from a semiconductor wafer. During a second interval the semiconductor plate and another electrode produce an RF electromagnetic field that results in a plasma that etches electric layers, underlayers and photoresist layers from the wafer.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: February 14, 2012
    Assignee: Lam Research Corporation
    Inventors: Tuqiang Ni, Wenli Collison, David Hemker, Lumin Li
  • Patent number: 8105953
    Abstract: A semiconductor manufacturing apparatus includes a chamber, a gas supplier, a vacuum pump, an electrode, a conductive knitted wire mesh and a radio frequency power supply. The electrode is placed outside of the chamber and fixed to the chamber. The gas supplier supplies gas into the chamber. The vacuum pump exhausts the chamber. The radio frequency power supply supplies radio frequency power to the electrode through the conductive knitted wire mesh.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: January 31, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Keiichirou Takehara
  • Patent number: 8092600
    Abstract: The plasma apparatus includes a conveying unit for conveying a substrate in a conveying direction while being situated at a processing position, an elongated electric field forming unit for forming an induction electric field by a coil, opposed to the processing position, a power supply for supplying high frequency power to the coil, an elongated gas introducing unit and a separating unit for separating a region where the forming unit is arranged and a region where the introducing unit is arranged from each other in an airtight fashion, having an elongated dielectric window arranged between the processing position and the forming unit. The forming unit, the introducing unit and the dielectric window are arranged in such a way that there longitudinal directions are matched with a width direction of the substrate being conveyed, and orthogonal to the conveying direction.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: January 10, 2012
    Assignee: Fujifilm Corporation
    Inventors: Jun Fujinawa, Norihiro Kadota
  • Patent number: 8083892
    Abstract: A method for manufacturing a semiconductor device may include: forming a main magnetic field having an axis, and forming a subsidiary magnetic field substantially parallel to the axis; applying an alternating current along a path between the main and the subsidiary magnetic fields; allowing a gas to flow along a flow path along the path of the current so that a gas plasma is generated from the gas; providing the gas plasma into a chamber separated from a position where the gas plasma is generated; and performing a process for manufacturing a semiconductor device by employing the gas plasma.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: December 27, 2011
    Assignees: Samsung Electronics Co., Ltd., New Power Plasma Co., Ltd.
    Inventors: Young-Min Min, Dae-Kyu Choi, Do-In Bae, Yun-Sik Yang, Wan-Goo Hwang, Jin-Man Kim
  • Patent number: 8075734
    Abstract: The present invention generally includes a remote plasma source and a method of generating a plasma in a remote plasma source. Cleaning gas may be ignited into a plasma in a remote location and then provided to the processing chamber. By flowing the cleaning gas outside of a cooled RF coil, a plasma may be ignited at either high or low pressure while providing a high RF bias to the coil. Cooling the RF coil may reduce sputtering of the coil and thus reduce undesirable contaminants from being fed to the processing chamber with the cleaning gas plasma. Reduced sputtering from the coil may extend the useful life of the remote plasma source.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: December 13, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Carl A. Sorensen, Jozef Kudela
  • Patent number: 8062473
    Abstract: A plasma processing apparatus includes in a processing chamber, a sample stage, a bell jar, a coil antenna, a Faraday shield, and a gas ring member located below a skirt portion of the bell jar and above the sample stage. The gas ring member supplies a process gas to a plasma generating space inside the bell jar from a gas port disposed on an inner surface of the gas ring member. A ring shaped plate is disposed near a periphery of the Faraday shield and having an inner surface facing and covering along the inner surface of the gas ring member and being spaced from the inner surface of the gas ring member so as to delimit a gap therebetween.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: November 22, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Ryoji Nishio, Ken Yoshioka, Saburou Kanai, Tadamitsu Kanekiyo, Hideki Kihara, Koji Okuda
  • Patent number: 8062470
    Abstract: A method and an apparatus are proposed for simultaneously coating the inner walls of a plurality of hollow containers, such as bottles, with fluid-impermeable barrier layers applied by a PECVD method with the use of transversal antennas capable of creating plasma having density increased in the vicinity of the inner walls of the containers. The barrier-layer application period is divided into a coating period and a noncoating cooling period, with RF energy constantly maintained under working conditions with shunting thereof from the coating station to the dummy loads during noncoating periods used for cooling the plastic containers. The apparatus comprises a vacuum chamber with a conveyor that transports the containers in a preoriented state for interaction with a plurality of aligning elements that can be inserted into the container openings for subsequent fixation at equal distances in positions aligned with the antennas that can be inserted into the containers for generation of the coating-applying plasma.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: November 22, 2011
    Inventors: Yuri Glukhoy, Tatiana Kerzhner, Anna Ryaboy
  • Patent number: 8062472
    Abstract: The present invention generally provides apparatus and method for adjusting plasma density distribution in an inductively coupled plasma chamber. One embodiment of the present invention provides an apparatus configured for processing a substrate. The apparatus comprises a chamber body defining a process volume configured to process the substrate therein, and a coil assembly coupled to the chamber body outside the process volume, wherein the coil assembly comprises a coil mounting plate, a first coil antenna mounted on the coil mounting plate, and a coil adjusting mechanism configured to adjust the alignment of the first coil antenna relative to the process volume.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: November 22, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Wei Liu, Johanes F. Swenberg, Hanh D. Nguyen, Son T. Nguyen, Roger Curtis, Philip A. Bottini
  • Patent number: 8048260
    Abstract: The present invention provides a magnetic neutral line discharge plasma processing system that can apply a plurality of linear magnetic neutral line discharge plasmas simultaneously so as to uniformly process all the surface area of a large rectangular substrate for homogeneousness. The management field generating means of the magnetic neutral line discharge plasma processing system has at least two linear current rods arranged outside the vacuum chamber in parallel with the surface to be processed of the object of processing in the vacuum chamber so as to form at least a linear magnetic neutral line in the vacuum chamber between adjacently located linear current rods.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: November 1, 2011
    Assignee: ULVAC, Inc.
    Inventor: Taijiro Uchida
  • Patent number: 8043471
    Abstract: A plasma processing apparatus includes a processing chamber; a plasma generating unit for generating a plasma of a gas supplied into the processing chamber; a substrate mounting table, disposed in the processing chamber, for mounting a semiconductor substrate having a surface on which an etching and/or a film forming process is to be performed. The apparatus further includes a metal member disposed in the processing chamber and to be etched by the plasma generated in the processing chamber to release a precursor of a film to be formed by the film forming process into the processing chamber; a gas supply unit for supplying a first and a second gas into the processing chamber, wherein the second gas which includes halogen atoms and is different from the first gas; a first and a second wiring for supplying high frequency power to the metal member and the substrate mounting table, respectively.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: October 25, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Hachishiro Iizuka
  • Patent number: 8021515
    Abstract: An inductively coupled plasma processing apparatus (100) comprises a plasma chamber (12) with a dielectric window (400) forming a self-supporting wall element of the plasma chamber (12). The dielectric window (400) has an external and an internal side with respect to the chamber (12). An electromagnetic field source (140) is arranged in front of the external side of the dielectric window (400) for generating an electromagnetic field within the plasma chamber (12). The field source comprises at least one magnetic core (301, 302, 303). The at least one magnetic core (301, 302, 303) is attached to the external side of the dielectric window (400), such that the at least one magnetic core helps the dielectric window (400) to withstand collapsing forces caused by negative pressure inside said chamber during operation.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: September 20, 2011
    Assignee: The European Community, Represented by the European Commission
    Inventors: Pascal Colpo, François Rossi, Reinhard Fendler