Patents Examined by Lynne Edmondson
  • Patent number: 11908601
    Abstract: There is provided a magnetic responsiveness composite material capable of increasing viscosity by applying a magnetic field when compounded together with a liquid in a composition. The magnetic responsive composite material comprises first particles as core particles composed of a nonmagnetic inorganic material and second particles composed of a magnetic material adhering to at least a part of surfaces of the first particles. A lipophilic treatment agent is applied to at least a part of surfaces of the second particles. The second particles satisfy a relationship of having a smaller average particle diameter than that of the first particles. A lipophilic treatment agent is preferably at least one kind selected from coupling agents and surfactants.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: February 20, 2024
    Assignee: SOMAR CORPORATION
    Inventors: Hirohisa Ishizaki, Akira Ochiai
  • Patent number: 11905447
    Abstract: A cadmium free quantum dot including a core that includes a first semiconductor nanocrystal including zinc, tellurium, and selenium, and a semiconductor nanocrystal shell that is disposed on the core and includes a zinc chalcogenide, wherein the quantum dot further includes magnesium and the mole ratio of Te:Se is greater than or equal to about 0.1:1 in the quantum dot; a production method thereof; and an electronic device including the same.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: February 20, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sungwoo Hwang, Yong Wook Kim, Soo Kyung Kwon, Seon-Yeong Kim, Ji-Yeong Kim
  • Patent number: 11905198
    Abstract: A glass furnace including an additive-containing product including an additive selected from: phosphorus compounds other than glasses and vitroceramics, tungsten compounds other than glasses and vitroceramics, molybdenum compounds other than glasses and vitroceramics, iron in the form of metal, aluminum in the form of metal, silicon in the form of metal, and their mixtures, silicon carbide, boron carbide, silicon nitride, boron nitride, glasses including elemental phosphorus and/or iron and/or tungsten and/or molybdenum, vitroceramics including elemental phosphorus and/or iron and/or tungsten and/or molybdenum, and their mixtures, and having the following chemical analysis, exclusively of the additive, as a percentage by weight on the basis of the oxides: Cr2O3?2%, and Cr2O3+Al2O3+CaO+ZrO2+MgO+Fe2O3+SiO2+TiO2?90%, and Cr2O3+Al2O3+MgO?60%, the content by weight of additive being in the range 0.01% to 6%.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 20, 2024
    Assignee: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Thibault Champion, Pierrick Vespa, Lionel Moitrier, Olivier Citti, Julien Pierre César Fourcade, Nabil Nahas
  • Patent number: 11897814
    Abstract: A rare earth aluminate sintered compact including rare earth aluminate phosphor crystalline phases and voids, wherein an absolute maximum length of 90% or more by number of rare earth aluminate phosphor crystalline phases is in a range from 0.4 ?m to 1.3 ?m, and an absolute maximum length of 90% or more by number of voids is in a range from 0.1 ?m to 1.2 ?m.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: February 13, 2024
    Assignee: NICHIA CORPORATION
    Inventors: Shozo Taketomi, Ryo Yamamoto, Tomomi Fujii, Toshiyuki Hirai
  • Patent number: 11895856
    Abstract: A quantum dot composition includes a quantum dot, a ligand to bind to a surface of the quantum dot, an additive having an amine group, and a precursor comprising an organometallic compound, the composition forming a modified quantum dot having a reformed surface characteristic. A light emitting element including the modified quantum dot may have improved lifespan, luminous efficiency, and material stability.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: February 6, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yunku Jung, Minki Nam, Hyunmi Doh, Yunhyuk Ko, Sungwoon Kim, Jaehoon Kim, Myoungjin Park, Jae Hong Park, Junwoo Park
  • Patent number: 11888098
    Abstract: The present disclosure relates to a light-emitting composition containing a perovskite compound and inorganic fine particles.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: January 30, 2024
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Shota Naito, Kentaro Mase
  • Patent number: 11879084
    Abstract: In the present disclosure embodiments, a phosphate phosphor including an activation center of trivalent chromium and a light emitting device are provided. The light emitting device includes a light source and the above mentioned phosphate phosphor, such that the phosphate phosphor is excited by the light source and emits a wide spectrum of the infrared light. The light emitting device with wide emission spectrum of the infrared light may be widely applied in detecting devices.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: January 23, 2024
    Assignee: Lextar Electronics Corporation
    Inventors: Chun-Che Lin, Chun-Han Lu, Yi-Ting Tsai, Yu-Chun Lee, Tzong-Liang Tsai
  • Patent number: 11873253
    Abstract: There is disclosed a piezoelectric ceramic having the composition: a[PbTiO3]-b[SrTiO3]-c[BiFeO3]-d[(KxBi1-x)TiO3]; wherein 0.4<x<0.6; 0.1<a<0.4; 0.01<b?0.2; c?0.05; d?0.01; and a+b+c+d=1 optionally comprising an A- or B-site metal dopant in an amount of up to 2 at. %.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: January 16, 2024
    Assignee: Xaar Technology Limited
    Inventors: Michael Watson, Angus Condie, Timothy Paul Comyn, Andrew Bell
  • Patent number: 11869693
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1?xBxRyFe2?yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: January 9, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Abdulhadi Baykal
  • Patent number: 11869694
    Abstract: A preparation method of a perfluoropolyether-based magnetic liquid includes dispersing magnetic nanoparticles coated with graphene oxide into a solution of N,N-dimethylformamide to obtain solution A; dispersing a surfactant into dichloromethane, and adding triethylamine as a cosolvent to obtain solution B; mixing the solution A and the solution B uniformly, heating them under reflux and stirring them for a modification reaction; and after the modification reaction is completed, washing and drying a reaction product to obtain the modified magnetic nanoparticles coated with the graphene oxide; dispersing the modified magnetic nanoparticles coated with the graphene oxide into a base carrier liquid to prepare the perfluoropolyether-based magnetic liquid. The surfactant is a perfluoroalkylamine. The base carrier liquid is a perfluoropolyether oil. The modification reaction is performed at a temperature of 50 to 120° C. for a time period of 20 to 50 hours.
    Type: Grant
    Filed: June 20, 2023
    Date of Patent: January 9, 2024
    Assignee: Tsinghua University
    Inventors: Decai Li, Shilin Nie
  • Patent number: 11862372
    Abstract: The present invention relates to a composition for bonded magnets having good hot water resistance and a method of manufacturing the composition. The method of manufacturing a composition for bonded magnets includes: obtaining a first kneaded mixture by kneading a rare earth-iron-nitrogen-based magnetic powder and an acid-modified polypropylene resin; and obtaining a second kneaded mixture by kneading the first kneaded mixture with a polypropylene resin and an amorphous resin having a glass transition temperature of 120° C. or higher and 250° C. or lower, wherein, with respect to 100 parts by weight of the rare earth-iron-nitrogen-based magnetic powder, the amount of the acid-modified polypropylene resin is 3.5 parts by weight or greater and less than 10.4 parts by weight, and the total amount of the polypropylene resin and the amorphous resin is 0.35 part by weight or greater and less than 3.88 parts by weight.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: January 2, 2024
    Assignee: NICHIA CORPORATION
    Inventors: Shuichi Tada, Satoshi Yamanaka
  • Patent number: 11858829
    Abstract: A ternary paraelectric having a Cc structure and a method of manufacturing the same are provided. The ternary paraelectric having a Cc structure includes a material having a chemical formula of A2B4O11 that has a monoclinic system, is a space group No. 9, and has a dielectric constant of 150 to 250, wherein “A” is a Group 1 element, and “B” is a Group 5 element. “A” may include one of Na, K, Li and Rb. “B” may include one of Nb, V, and Ta. The A2B4O11 material may be Na2Nb4O11 in which bandgap energy thereof is greater than that of STO. The A2B4O11 material may have relative density that is greater than 90% or more.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: January 2, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Giyoung Jo, Chan Kwak, Hyungjun Kim, Euncheol Do, Hyeoncheol Park, Changsoo Lee
  • Patent number: 11859118
    Abstract: Quantum dots that are cadmium-free and/or stoichiometncally tuned are disclosed, as are methods of making them. Inclusion of the quantum dots and others in a stabilizing polymer matrix is also disclosed. The polymers are chosen for their strong binding affinity to the outer layers of the quantum dots such that the bond dissociation energy between the polymer material and the quantum dot is greater than the energy required to reach the melt temperature of the cross-linked polymer.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 2, 2024
    Assignee: TECTUS CORPORATION
    Inventors: Lianhua Qu, Hunaid Nulwala
  • Patent number: 11851595
    Abstract: A lighting apparatus includes a semiconductor light source in direct contact with a polymer composite comprising a color stable Mn4+ doped phosphor, wherein the lighting apparatus has a color shift of ?1.5 MacAdam ellipses after operating for at least 2,000 hour at a LED current density greater than 2 A/cm2, a LED wall-plug efficiency greater than 40%, and a board temperature greater than 25° C.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: December 26, 2023
    Assignee: CURRENT LIGHTING SOLUTIONS, LLC
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar, William Winder Beers
  • Patent number: 11827828
    Abstract: A semiconductor nanocrystal particle including: a core including a first semiconductor material; and a shell disposed on the core, wherein the shell includes a second semiconductor material, wherein the shell is free of cadmium, wherein the shell has at least two branches and at least one valley portion connecting the at least two branches, and wherein the first semiconductor material is different from the second semiconductor material.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: November 28, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Garam Park, Eun Joo Jang, Yongwook Kim, Jihyun Min, Hyo Sook Jang, Shin Ae Jun, Taekhoon Kim, Yuho Won
  • Patent number: 11820055
    Abstract: The present invention relates to ferrite particles for bonded magnets and a resin composition for bonded magnets which can provide a bonded magnet molded product capable of realizing a high magnetic force and a complicated multipolar waveform owing to such a feature that the ferrite particles are readily and highly oriented against an external magnetic field in a flowing resin upon injection molding, as well as a bonded magnet molded product obtained by injection-molding the above composition. According to the present invention, there are provided ferrite particles for bonded magnets which have a crystallite size of not less than 500 nm as measured in an oriented state by XRD, and an average particle diameter of not less than 1.30 ?m as measured by Fisher method; a resin composition for bonded magnets; and a molded product obtained by injection-molding the composition.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: November 21, 2023
    Assignee: TODA KOGYO CORP.
    Inventors: Yasushi Nishio, Yasuhiko Fujii, Hiromitsu Sakurai
  • Patent number: 11823823
    Abstract: According to the present invention, there are provided ferrite particles for bonded magnets and a resin composition for bonded magnets which are capable of producing a bonded magnet molded product having a good tensile elongation and exhibiting excellent magnetic properties, as well as a bonded magnet molded product such as a rotor which is obtained by using the resin composition. The present invention relates to ferrite particles for bonded magnets having a bulk density of not less than 0.5 g/cm3 and less than 0.6 g/cm3 and a degree of compaction of not less than 65%, a resin composition for bonded magnets using the ferrite particles, and a molded product obtained by using the ferrite particles and the resin composition.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: November 21, 2023
    Assignee: TODA KOGYO CORPORATION
    Inventors: Yasushi Nishio, Hiromitsu Sakurai, Norihiro Fukushina, Yasuhiko Fujii
  • Patent number: 11802239
    Abstract: Provided are a quantum dot, a method of preparing the quantum dot, an optical member including the quantum dot, and an electronic device including the quantum dot. The quantum dot includes a core including indium (In), A1, and A2; and a shell covering the core. A1 is a Group V element, A2 is a Group III element other than indium, and the core includes a first region, and a second region covering the first region. The first region does not include A2, and includes indium and A1, and the second region includes indium, A1, and A2, and indium and A2 are alloyed with each other in the second region.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: October 31, 2023
    Assignees: SAMSUNG DISPLAY CO., LTD., HONGIK UNIVERSITY INDUSTRY-ACADEMIA COOPERATION FOUNDATION
    Inventors: Yunhyuk Ko, Heesun Yang, Changhee Lee, Kyunghye Kim, Sungwoon Kim, Jungho Jo
  • Patent number: 11795388
    Abstract: A plastic scintillator includes a polymeric matrix comprising a primary fluorophore capable of forming an amorphous glass in its pure form. The primary fluorophore is also capable of generating luminescence in the presence of ionizing radiation and includes: a central species including silicon; a luminescent organic group bonded to the central species or to an optional organic linker group, the luminescent organic group including fluorene or an analog thereof; and the optional organic linker group, if present, is bonded to the central species and the luminescent organic group.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: October 24, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Nicholas Myllenbeck, Patrick L. Feng, Joseph Carlson
  • Patent number: 11795065
    Abstract: The present invention provides iron oxide magnetic particles including an iron oxide and MXn, wherein M includes one or more selected from the group consisting of Cu, Sn, Pb, Mn, Ir, Pt, Rh, Re, Ag, Au, Pd, and Os, X includes one or more selected from the group consisting of F, Cl, Br, and I, and n is an integer of 1 to 6.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: October 24, 2023
    Assignee: ZTI BIOSCIENCES CO., LTD.
    Inventors: Hyungseok Chang, Sei Jin Park, Yong-Sun Park, Ji Young Ryu, Yoon-Sik Lee