Patents Examined by Mallika D Fairchild
  • Patent number: 11654282
    Abstract: The invention relates to a method and a cochlear implant system comprising; a microphone unit configured to receive an acoustical signal and transmit an audio signal based on the acoustical signal, a processor unit configured to receive the audio signal and process the audio signal into a plurality channels that are then used to generate a plurality of electrode pulses, an electrode array including a plurality of electrodes (M) configured to stimulate auditory nerves of a user of the cochlear implant system based on the plurality of electrode pulses, and wherein the processor unit is configured to assign an importance value to one or more electrodes of the plurality of electrodes, wherein each of the importance values is determined based on a status of an electrode pulse assigned to the respective electrode, and wherein the status of the electrode pulse of the plurality of electrode pulses is determined based on a masking model of across-electrode interferences imposed on that electrode pulse by other electro
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: May 23, 2023
    Assignee: Oticon Medical A/S
    Inventors: Aswin Adris Wijetillake, Manuel Segovia Martinez
  • Patent number: 11642536
    Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include controlling communication pulse parameter(s) of one or more communication pulses (produced by pulse generator(s)) based on accelerator output(s) indicative of the orientation of the IMD. The communication pulse parameter(s) that is/are controlled can be, e.g., communication pulse amplitude, communication pulse width, communication pulse timing, and/or communication pulse morphology. Such embodiments can be used to improve conductive communications between IMDs whose orientation relative to one another may change over time, e.g., due to changes in posture and/or due to cardiac motion over a cardiac cycle.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: May 9, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
  • Patent number: 11642539
    Abstract: A wearable medical device is provided for monitoring the cardiac health of a patient, for example, for indications of cardiac anomalies, where the device includes ECG sensors in electrical contact with the patient's body, therapy electrodes for providing electrical therapy to the patient's heart, and a control unit having at least one touch control with force sensor disposed on its housing for contacting with a finger. Signals from the touch control may be analyzed to identify force application below a first force threshold and at or above a second force threshold below the first force threshold, and, responsive to detecting such application of force, user input may be registered. User inputs to the at least one touch control may be used to delay therapy by the therapy electrodes.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 9, 2023
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: John Clark, Mark Roberto
  • Patent number: 11642168
    Abstract: A pulsed laser skin treatment device is for laser induced optical breakdown of hair or skin tissue. The device has a light exit window to be placed against a surface to be treated such as skin during use. A feedback system is used for determining a state of contact between the light exit window and the surface. To this end the feedback system is capable of detecting a feedback signal representative for the state of contact. If the feedback signal or the state of contact is such that the risk of skin surface or device damage by the device operation is too high, the user or the device has a way to interrupt the treatment or to reduce light output to reduce or eliminate this risk.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: May 9, 2023
    Assignee: Koninklijke Philips N.V.
    Inventors: Babu Varghese, Rieko Verhagen
  • Patent number: 11638534
    Abstract: A method and system are provided for continuous monitoring perfusion of an organ or extremity, and for early detection of progressive partial occlusion of arterial blood supply or venous drainage of tissue. The method and system measure a delay in wave propagation of a blood perfusion wave, which is associated with flow of blood through a blood vessel. The delay is correlated to an amount of obstruction in the blood vessel.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: May 2, 2023
    Assignee: The Medical Research Infrastructure and Health Services Fund of the Tel Aviv Medical Center
    Inventors: Amir Landesberg, Amit Livneh, Yehuda Wolf
  • Patent number: 11638824
    Abstract: A method of treating motor deficits in a stroke patient, comprising assessing a patient's motor deficits, determining therapeutic goals for the patient, based on the patient's motor deficits, selecting therapeutic tasks based on the therapeutic goals, performing each of the selected therapeutic tasks repetitively, observing the performance of the therapeutic tasks, initiating the stimulation of the vagus nerve manually at approximately a predetermined moment during the performance of the therapeutic tasks, stimulating the vagus nerve of the patient during the performance of the selected therapeutic tasks, and improving the patient's motor deficits.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: May 2, 2023
    Assignee: THE BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Michael P. Kilgard, Nazer Engineer, David Michael Pierce, Robert L. Rennaker
  • Patent number: 11633152
    Abstract: This invention generally relates to methods useful for measuring heart rate, respiration conditions, and oxygen saturation and a wearable device that incorporate those methods with a computerized system supporting data collection, analysis, readout and sharing. Particularly this present invention relates to a wearable device, such as a wristwatch or ring, for real time measuring heart rate, respiration conditions, and oxygen saturation.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: April 25, 2023
    Assignee: Purdue Research Foundation
    Inventors: Jacqueline C Linnes, Benjamin David Walters, Orlando S Hoilett
  • Patent number: 11633608
    Abstract: A system and method for selecting leadwire stimulation parameters includes a processor iteratively performing, for each of a plurality of values for a particular stimulation parameter, each value corresponding to a respective current field: (a) shifting the current field longitudinally and/or rotationally to a respective plurality of locations about the leadwire; and (b) for each of the respective plurality of locations, obtaining clinical effect information regarding a respective stimulation of the patient tissue produced by the respective current field at the respective location; and displaying a graph plotting the clinical effect information against values for the particular stimulation parameter and locations about the leadwire, and/or based on the obtained clinical effect information, identifying an optimal combination of a selected value for the particular stimulation parameter and selected location about the leadwire at which to perform a stimulation using the selected value.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: April 25, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Stephen Carcieri, Dean Chen, Michael A. Moffitt
  • Patent number: 11633589
    Abstract: This specification generally relates to a biphasic injectable electrode which comprises a plurality of solid particles and a transporter phase, wherein both the solid particles and the transporter phase comprise poly(3,4-ethylenedioxythiophene)polystyrene sulfonate. The biphasic injectable electrode, in use in a surgical resection cavity in the brain includes inserting the biphasic injectable electrode into a surgical resection cavity in the brain with a tumor resection margin. A probe is inserted into the electrode and four counter electrodes are implanted in the surrounding brain tissue. A charge delivery device delivers charge to the probe via a wire both of which have also been implanted.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: April 25, 2023
    Assignee: QV Bioelectronics Ltd.
    Inventors: Christopher John Bullock, Richard Zhiming Fu, Nimrah Munir
  • Patent number: 11633151
    Abstract: A medical apparatus configured to neuromodulate tissue and/or record patient information is provided. The apparatus includes an external system to transmit transmission signal(s), each signal having at least power or data, and an implantable system to receive the transmission signal(s). The data transfer between the external and implantable systems is asynchronous. The external system includes external antenna(s) to transmit a transmission signal. The transmission signal is an amplitude modulated signal modulated by varying a load on the external antenna(s) that causes an impedance mismatch prior to amplifying the signal for transmission. An implantable device includes implantable antenna(s) to receive the transmission signal. The implantable system comprises a receiver to receive the transmission signal from the implantable antenna(s), implantable transmission module(s) to transmit data to the external system, and a variable load connected to the implantable antenna(s).
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: April 25, 2023
    Assignee: Nalu Medical, Inc.
    Inventors: Daniel Pivonka, Anatoly Yakovlev
  • Patent number: 11628307
    Abstract: This invention corresponds to an electrical and magnetic tissue stimulation device comprising a multi-source distribution circuit, a decoupled output stage circuit connected to the multi-source distribution circuit and to a control unit; the control unit is connected to the multi-source distribution circuit and to the decoupled output stage circuit, where the control unit generates PE and Out outputs for electrical and magnetic stimulation of a tissue. The invention also has a multi-source distribution circuit that comprises a control unit connected to a source output selector. A voltage regulator circuit is connected to a current limiter. The current limiter is connected to a capacitor, to a capacitor bank and to the source output sector, wherein the control unit controls the source output selector by means of an output control signal bus, the source output selector connects or disconnects one or more capacitors from the capacitor bank.
    Type: Grant
    Filed: November 17, 2018
    Date of Patent: April 18, 2023
    Assignee: PANACEA QUANTUM LEAP TECHNOLOGY LLC
    Inventor: Francisco Javier Velasco Valcke
  • Patent number: 11623096
    Abstract: Devices, systems, and techniques are described for identifying stimulation parameter values based on electrical stimulation that induces dyskinesia for the patient. For example, a method may include controlling, by processing circuitry, a medical device to deliver electrical stimulation to a portion of a brain of a patient, receiving, by the processing circuitry, information representative of an electrical signal sensed from the brain after delivery of the electrical stimulation, determining, by the processing circuitry and from the information representative of the electrical signal, a peak in a spectral power of the electrical signal at a second frequency lower than a first frequency of the electrical stimulation, and responsive to determining the peak in the spectral power of the electrical signal at the second frequency, performing, by the processing circuitry, an action.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: April 11, 2023
    Assignee: Medtronic, Inc.
    Inventors: Rene A. Molina, Scott R. Stanslaski, Jadin C. Jackson, Christopher L. Pulliam, Eric J. Panken, Michelle A. Case, Abbey Beuning Holt Becker
  • Patent number: 11623098
    Abstract: There is provided a neural interface device for unidirectional stimulation of a nerve including at least one A-type nerve fiber or at least one at least partially myelinated nerve fiber. The device includes an electrode arrangement for placing on or around the nerve. The electrode arrangement includes a first electrode configured to be positively charged and a second electrode configured to be negatively charged, where the surface area of the second electrode is larger than the surface area of first electrode.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: April 11, 2023
    Assignee: Galvani Bioelectronics Limited
    Inventor: Gerald Edwin Hunsberger
  • Patent number: 11612361
    Abstract: According to an embodiment, an information display system includes a displacement measurement unit, a display unit, and a controller. The displacement measurement unit measures displacement of a measurement part. The display unit displays a time axis of signal detection. The controller controls the displacement measurement unit and the display unit. When a signal that is output from the displacement measurement unit meets a given condition, the controller determines that displacement of the measurement part is detected and displays detection information representing that the displacement is detected in any one of a time position and a time area on the display unit in which the displacement is detected.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: March 28, 2023
    Assignee: RICOH COMPANY, LTD.
    Inventors: Hideaki Yamagata, Noriyuki Tomita, Aritaka Hagiwara, Shinya Mukasa, Yutaka Yagiura, Daisuke Sakai
  • Patent number: 11602640
    Abstract: An irradiation device capable of emitting electromagnetic radiation at variable beam angles, comprises, a housing assembly including a longitudinal shell, the longitudinal shell having a first end and a second end, a first end cap assembly provided at the first end of the longitudinal shell, and a second end cap assembly provided at the second end of the longitudinal shell. Further, the irradiation device comprises a rotate and lock mechanism adapted to allow rotational adjustment of the longitudinal shell, a plurality of lenses provided along with the longitudinal shell, wherein each one of the plurality of lenses has a distinct set of optical characteristics when compared with other lenses of the plurality of lenses and a radiation source configured to emit electromagnetic radiation, provided within the longitudinal shell.
    Type: Grant
    Filed: May 16, 2020
    Date of Patent: March 14, 2023
    Inventor: Alain Dijkstra
  • Patent number: 11602631
    Abstract: A method and apparatus to treat hyperhidrosis is provided in which a battery provides a milliampere electrical current to the inside of a waterproof glove containing water and sealed to the user's arm so that circulation is not unduly restricted while the user can raise the water-filled gloves and hands above the user's head without leaking. A tapered portion on the proximal end of each glove is folded inside the glove to seal against the user's arm to form a pocket between the tapered portion which seals against the user's arms, and part of a wrist portion of the glove located radially outward of the tapered portion. When the user's gloves and hands rotate upward, water collects in the pocket(s) while the tapered portion provides a leakproof seal, thus allowing manual manipulation while wearing the water-filled gloves.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: March 14, 2023
    Assignee: NM THERAPEUTICS, LLC
    Inventors: Kenny Pham, Jennifer Nguyen
  • Patent number: 11596786
    Abstract: A vestibular stimulation array is disclosed having one or more separate electrode arrays each operatively adapted for implantation in a semicircular canal of the vestibular system, wherein each separate electrode array is dimensioned and constructed so that residual vestibular function is preserved. In particular, the electrode arrays are dimensioned such that the membranous labyrinth is not substantially compressed. Furthermore, the electrode array has a stop portion to limit insertion of the electrode array into the semi-circular canal and is still enough to avoid damage to the anatomical structures.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: March 7, 2023
    Assignees: Cochlear Limited, University of Washington Center for Commercialization
    Inventors: Frank Risi, Colin Irwin, Jay T. Rubinstein, Felipe Santos, James O. Phillips
  • Patent number: 11590026
    Abstract: A method of controlling an eye surgical laser is disclosed for the separation of a volume body with predefined posterior and anterior interfaces from a human/animal cornea. The method including controlling the laser with a control device, the laser being configured to emit pulsed laser pulses in a predefined pattern into the cornea. The posterior and anterior interfaces of the volume body are defined by the predefined pattern and are generated by an interaction of the individual laser pulses with the cornea through photodisruption. The control device controls the laser beam such that both interfaces are generated via a continuous, uninterrupted sequence of laser pulses. A treatment device is disclosed with at least one eye surgical laser for the separation of a predefined corneal volume with predefined interfaces of a human/animal eye by photodisruption and with at least one control device for the laser(s).
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: February 28, 2023
    Assignee: SCHWIND EYE-TECH-SOLUTIONS GMBH
    Inventors: Samuel Arba-Mosquera, Shwetabh Verma, Nico Triefenbach, Mario Shraiki
  • Patent number: 11590339
    Abstract: An iontophoretic patch for transdermal delivery of biologically active agents includes at least two electrodes in contact with at least two hydrogel reservoirs. At least one of the hydrogel reservoirs carries at least one active agent and, in use of the iontophoretic patch, is disposed on a user's skin and delivers at least one active agent into the skin. The patch includes a control unit to generate a stimulation pattern having stimulation parameters delivered to stimuli locations on the skin. A stimulation unit generates a time sequence of pulses from the stimulation parameters generated by the control unit. The patch further includes a demultiplexing unit configured to perform independent spatio-temporal distribution of the electrical pulses in the time sequence of pulses to at least one electrode; at least one optical sensing system, for continuously measuring an amount of the active agent in the hydrogel reservoir; and a feedback unit.
    Type: Grant
    Filed: June 23, 2018
    Date of Patent: February 28, 2023
    Assignee: FUNDACIÓN TECNALIA RESEARCH & INNOVATION
    Inventors: Goran Bijelic, Manuel Montejo Estevez, Matija Strbac
  • Patent number: 11590358
    Abstract: A catheter is disclosed for performing ultraviolet light therapy in a pulmonary system of a patient, which includes a catheter body having opposed proximal and distal end portions, a handle assembly operatively associated with the proximal end portion of the catheter body, an illumination assembly operatively associated with the distal end portion of the catheter body and including an LED light source for generating UVC radiation, wherein the illumination assembly includes a coupler connecting the LED light source with the distal end portion of the catheter body, and an elongated braided sleeve disposed within the catheter body, wherein the coupler is adapted to transfer heat from the illumination assembly to the braided sleeve, such that the braided sleeve serves as a heat sink for the illumination assembly.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: February 28, 2023
    Assignee: Osypka Technologies LLC
    Inventors: Thomas P. Osypka, Timothy Searfoss, N R Chandrasekar