Abstract: Aircraft radome apparatuses and methods are described. In some examples, a radome is to be mounted on an aircraft. In some examples, the radome includes an outer mold line having a closure angle. In some examples, the closure angle is configured to reduce a footprint of the radome. In some examples, the closure angle is also configured to reduce a likelihood of separated airflow from occurring proximate a trailing portion of the radome during a flight of the aircraft. In some examples, the radome is to be mounted on the aircraft at a location that reduces a rate of change of a transverse cross-sectional area of the aircraft.
Abstract: The tray (10) of the present invention is for use in hydroponics. The tray has a first end and a second end having a longitudinal axis defined therebetween. An inlet (20) is provided at the first end for receiving nutrient and an outlet (30) is provided at the second end for draining nutrient solution. A levee system comprising paddle assemblies (40) extending orthogonal to the longitudinal axis of the tray is disposed between the first end and second end of the tray. The paddle assemblies are adapted to partition the tray to define compartments and to impede the downstream flow of nutrient solution from the first end to the second end. The paddle assemblies are adjustable so as regulate depth of nutrient solution in each compartment to enable optimal irrigation of the plants cultivated in each compartment. To complete a hydroponic system, the tray of the present invention connects to at least one reservoir for holding nutrient solution.