Patents Examined by Mark W Bockelman
  • Patent number: 9585642
    Abstract: Various embodiments of a minimally invasive implantable medical device (IMD) system are described. In one embodiment, the implantable medical device system includes an external device for transmitting a communication signal and an implantable device for receiving the communication signal by inductive coupling. The implantable device is configured to harvest power from the inductively coupled communication signal and power a signal generator from the harvested power to generate a therapeutic electrical stimulation signal.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: March 7, 2017
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Joel A. Anderson, Forrest C. M. Pape, Todd V. Smith, Eric H. Bonde
  • Patent number: 9585584
    Abstract: A physiological signal monitor having retractable wires may include a housing, a patch and a cradle. The housing may be adapted to carry a memory, a first electrical contact, a second electrical contact, and a processor in data communication with the memory. The patch may include a first side adapted to be secured to a patient and an opposing second side. The cradle connects to the second side of the patch and may be adapted to carry the housing. The cradle may include a wire retractor, a first electrical pad adapted to contact the first electrical contact, a second electrical pad adapted to contact the second electrical contact, a first sensing connector, a second sensing connector, a first wire connecting the first electrical pad to the first sensing connector, and a second wire connecting the second electrical pad to the second sensing connector.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: March 7, 2017
    Assignee: Medicomp, Inc.
    Inventors: Monte Marek, Sara England, Anthony Balda, George Koos
  • Patent number: 9549676
    Abstract: This document discusses, among other things, a system comprising a sensor signal processor configured to receive a plurality of electrical sensor signals produced by a plurality of sensors and at least one sensor signal produced by an implantable sensor, a memory that includes information indicating a co-morbidity of a subject, a sensor signal selection circuit that selects a sensor signal to monitor from among the plurality of sensor signals, according to an indicated co-morbidity, a threshold adjustment circuit that adjusts a detection threshold of the selected sensor signal according to the indicated co-morbidity, and a decision circuit that applies the adjusted detection threshold to the selected sensor signal to determine whether an event associated with worsening heart failure (HF) occurred in the subject and outputs an indication of whether the event associated with worsening HF occurred to a user or process.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: January 24, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Haresh G. Sachanandani, Yunlong Zhang
  • Patent number: 9550060
    Abstract: An apparatus for generating focused currents in biological tissue is provided. The apparatus comprises an electric source capable of generating an electric field across a region of tissue and means for altering the permittivity of the tissue relative to the electric field, whereby a displacement current is generated. The means for altering the permittivity may be a chemical source, optical source, mechanical source, thermal source, or electromagnetic source.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: January 24, 2017
    Assignee: Highland Instruments, Inc.
    Inventors: Timothy Andrew Wagner, Uri Tzvi Eden
  • Patent number: 9545523
    Abstract: Systems and methods that enable tissue cooling applications and delivery of electrical energy to adipose tissue for alteration and reduction of body fat are described herein. Aspects of the disclosure are directed to, for example, temperature-controlled electroporation of subcutaneous lipid-rich cells. Additional aspects of the disclosure are directed to treatment methods for treating a target region of a human subject's body to achieve an alteration of subcutaneous adipose tissue. The method can include, for example, removing heat from the target region of the human subject during a treatment process to cool subcutaneous lipid-rich cells in the target region to a temperature below normal body temperature. Furthermore, the method can include delivering energy to the target region to produce an electric field in an amount sufficient to create pores in membranes of the subcutaneous lipid-rich cells that have been cooled to the temperature below normal body temperature.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 17, 2017
    Assignee: Zeltiq Aesthetics, Inc.
    Inventor: Gurvinder Singh Nanda
  • Patent number: 9510895
    Abstract: A surgical instrument operable to sever tissue includes a body assembly and a selectively coupleable end effector assembly. The end effector assembly may include a transmission assembly, an end effector, and a rotational knob operable to rotate the transmission assembly and the end effector. The body assembly includes a trigger and a casing having a distal aperture configured to receive a portion of the end effector assembly. First and second coupling mechanism portions cooperatively couple the end effector assembly to the body assembly for use. The coupling may mechanically and/or electrically couple the end effector assembly to the body assembly via various coupling mechanisms. For instance, a threaded slip nut may couple to threads within the body assembly. In one configuration, the end effector assembly may have locking tabs that rotate into rotational recesses in the body assembly. The locking tabs may include electrical contacts and/or optically perceivable indicators.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: December 6, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Kevin L. Houser, Cory G. Kimball, Gavin M. Monson, Richard W. Timm
  • Patent number: 9492221
    Abstract: A surgical instrument includes an end effector and a housing mechanically coupled to the end effector. The end effector includes a first actuating device configured to perform a first surgical procedure and a second actuating device integrally associated with the first actuating device and configured to perform a second surgical procedure, the second surgical procedure being independently operable and different than the first surgical procedure. An outer portion of the first actuating device and an outer portion of the second actuating device form a portion of an outer housing of the end effector. The housing includes a first actuator, mechanically coupled to the first actuating device and configured to impart movement to the first actuating device and a second actuator, mechanically coupled to the second actuating device and configured to impart movement to the second actuating device.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: November 15, 2016
    Assignee: COVIDIEN LP
    Inventor: David M. Garrison
  • Patent number: 9486270
    Abstract: Methods and apparatus are provided for bilateral renal neuromodulation, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: November 8, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 9486618
    Abstract: A system for electrically stimulating a user comprising: a first housing portion defining an array of openings; an array of permeable bodies with portions exposed through the array of openings and wetted with a solution that facilitates electrical coupling between the system and a body region of the user, wherein each permeable body has a cavity at a proximal portion and a distal portion and is configured to transmit the solution to the body region of the user; a substrate region defining an array of protrusions configured to support the array of permeable bodies and composed of a conductive polymer; and a set of conductors in communication with the substrate region and including a first conductor that provides a first subset of the array of permeable bodies with a first polarity and a second conductor that provides a second subset of the array of permeable bodies with a second polarity.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: November 8, 2016
    Assignee: Halo Neuro, Inc.
    Inventors: Brett Wingeier, Tal Bar-Or, Colin Davis, Victoria Hammett, Randall Lin
  • Patent number: 9474563
    Abstract: Methods and apparatus are provided for treating contrast nephropathy, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: October 25, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 9468497
    Abstract: Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: October 18, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Howard R. Levin, Mark Gelfand, Nicolas Zadno
  • Patent number: 9463066
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: October 11, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
  • Patent number: 9463322
    Abstract: A method and system is described for ensuring a state of an active implantable medical device based on the presence and persistence of a magnetic field. The output of a magnetic field sensor is monitored. The active implantable medical device is maintained in a first state, for so long as the presence of a magnetic field is detected by the magnetic field sensor, until a first interval is surpassed. If the first interval is surpassed, then a determination is made as to whether a second interval has been surpassed. If it is determined that the second interval has not been surpassed, then the active implantable medical device is transitioned into a second state. If it is determined that the second interval has been surpassed, then it is ensured that the active implantable medical device is in a predetermined one of the first and second states.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: October 11, 2016
    Assignee: NeuroPace, Inc.
    Inventors: Brett Wingeier, Barbara Gibb, Craig Baysinger, Thomas Tcheng, Suresh Gurunathan
  • Patent number: 9456869
    Abstract: Methods and apparatus are provided for bilateral renal neuromodulation, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: October 4, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 9445867
    Abstract: Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: September 20, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Howard R. Levin, Mark Gelfand, Nicolas Zadno
  • Patent number: 9440088
    Abstract: The technology disclosed herein relates to a method for lead analysis for an implanted medical device. A summary data record is retrieved associated with one or more episodes from an implanted medical device through a communication module. Episode selection criteria are applied to the summary data record by a processing module. One or more episode data records are retrieved from the implanted medical device for one or more episodes for which the episode selection criteria was satisfied. Noise detection criteria are applied to the episode data record. A notification module is configured to generate an alert if the noise detection criteria are satisfied.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: September 13, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Deepa Mahajan, Arjun D. Sharma, Jeffry V. Marshik
  • Patent number: 9439726
    Abstract: Methods and apparatus are provided for treating hypertension, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: September 13, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 9427582
    Abstract: Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, and cortical stimulation, and many related purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. It is advantageous that the array edges not contact tissue.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 30, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J Greenberg, Matthew J McMahon, Jordan Matthew Neysmith, James S Little, Neil Hamilton Talbot, Kelly H McClure, Brian V Mech
  • Patent number: 9409014
    Abstract: A method of modifying larynx position in a horse includes cutting one end of digastric muscle, attaching the cut end of the digastric muscle to thyroid cartilage or thyrohoid bone thereby trans-positioning the digastric muscle, providing a stimulation electrode configured to stimulate the trans-positioned digastric muscle, generating at least one stimulation parameter for the stimulation electrode using a processor, and stimulating the trans-positioned digastric muscle with the stimulation electrode using the stimulation parameter in order to modify the larynx position.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: August 9, 2016
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventor: Werner Lindenthaler
  • Patent number: 9403010
    Abstract: A site-specific deep brain stimulation for enhancement of memory is described. A method of the site-specific deep brain stimulation for enhancement of memory may include implanting intracranial depth electrodes in a patient, wherein the electrodes are placed in right and/or left entorhinal regions, and stimulating the electrodes with current set below an after-discharge threshold. The method may include stimulation at a specific brain site in the medial temporal lobe, stimulation (ODTS) at specific stages of information processing. A system for site specific deep brain stimulation of entorhinal regions during specific stages of information processing is also described.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: August 2, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Itzhak Fried, Nanthia Suthana, Barbara Knowlton