Patents Examined by Mark W Bockelman
  • Patent number: 9814873
    Abstract: Methods and apparatus are provided for bilateral renal neuromodulation, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: November 14, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 9802035
    Abstract: Apparatus for the delivery of an electrical field which facilitates the intracellular delivery of a therapeutic agent to a predetermined site within the tissue of a patient. The apparatus will comprise a plurality of penetrating electrodes arranged in a predetermined spatial relationship, each electrode with a cross sectional area contributing to the total cross sectional area of all electrodes, and structural means incorporating an inanimate source of energy operatively connected to the plurality of electrodes for deploying the electrodes, wherein the source of energy is sufficient to impart a force of at least 1000 pounds per square inch (0.7 kilogram per square millimeter) of total cross sectional area of all electrodes at the initiation of the deployment of the electrodes. The apparatus will also comprise means for generating an electrical field which facilitates the intracellular delivery of a therapeutic agent, which means is operatively connected to said electrodes at least in their deployed state.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: October 31, 2017
    Assignee: ICHOR MEDICAL SYSTEMS, INC.
    Inventors: Steven P. Masterson, Andrew W. Hannaman, Robert M. Bernard
  • Patent number: 9802048
    Abstract: A method, system, and apparatus for providing a stimulation signal comprising a variable ramping portion using an implantable medical device (IMD). The first electrical comprises a first ramping portion. The first ramping portion comprises a first parameter and having a first value. The first electrical signal is applied to a target location of the patient's body. A second electrical signal comprising a second ramping portion is generated. The second ramping portion comprises the first parameter having a second value that is different from the first value. The second electrical signal is applied to a target location of the patient's body.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: October 31, 2017
    Assignee: CYBERONICS, INC.
    Inventor: Randolph K. Armstrong
  • Patent number: 9788779
    Abstract: We report a method of determining an occurrence of an epileptic convulsive seizure in a patient, comprising: receiving body data from a patient during a first time period, determining a work level relating to said first time period at least based partially upon said body data; determining whether said work level exceeds an extreme work level threshold; performing a responsive action, in response to a determination that said work level exceeds said extreme work level threshold. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: October 17, 2017
    Assignee: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Patent number: 9788740
    Abstract: A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: October 17, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Angela C. Tooker, Sarah H. Felix, Satinderpall S. Pannu, Kedar G. Shah, Heeral Sheth, Vanessa Tolosa
  • Patent number: 9782592
    Abstract: A neurostimulation system and method of blocking a neural axon. Time-varying electrical energy is conveyed to a blocking site on the neural axon for an initial phase. The conveyed electrical energy has an amplitude and frequency during the initial phase sufficient to block action potentials from propagating along the neural axon from a location proximal to the blocking site to a location distal to the blocking site. The time-varying electrical energy is conveyed to the blocking site on the neural axon for a subsequent phase contiguous with the initial phase. The conveyed electrical energy has a decreased amplitude and a frequency during the subsequent phase sufficient to maintain blocking of the action potentials along the neural axon from the location proximal to the blocking site to the location distal to the blocking site.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: October 10, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Dongchul Lee
  • Patent number: 9770582
    Abstract: An implantable electrode array that includes a carrier on which multiple spaced apart electrodes are disposed. Embedded in the module are control modules. The control modules are contained in packages. Portions of the packages extend outwardly from the carrier so as to be disposed against adjacent surfaces of the carrier. The packages contain conductive tracts that provide conductive links from the conductors internal to the carrier to the packaged control modules.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: September 26, 2017
    Assignee: STRYKER CORPORATION
    Inventors: Robert Brindley, John Janik, Edward Chia-Ning Tang, James Bernard Dunlop, Joseph Leland Spangler
  • Patent number: 9770594
    Abstract: A medical device includes a VNS pulse burst generator for stimulation of the vagus nerve, and a controller for analyzing the cardiac rhythm. It further includes a sequencer that uses an estimator to calculate during a given cycle an estimate of the temporal position of the R wave of the next cycle. The controller is configured to define the moment of application of the VNS pulse burst as an instant corresponding to the estimate minus a predetermined advance delay. VNS therapy is thus delivered in a non-vulnerable period, near the end of the period of natural ventricular escape.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: September 26, 2017
    Assignee: SORIN CRM SAS
    Inventors: Jean-Luc Bonnet, Christine Henry
  • Patent number: 9731132
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: August 15, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
  • Patent number: 9717923
    Abstract: Implantable cardiac systems and methods for providing substernal pacing in an ICD system are described. In one example, an implantable cardiac system comprises an ICD system and an implantable leadless pacing device (LPD) communicatively coupled to the ICD system. The ICD system includes an ICD and an implantable defibrillation lead having a proximal portion coupled to the ICD and a distal portion having a defibrillation electrode configured to deliver a defibrillation shock to a heart of the patient. The LPD includes a housing, a first electrode on the housing, a second electrode on the housing, and a pulse generator within the housing and electrically coupled to the first electrode and the second electrode. The housing of the LPD is implanted substantially within an anterior mediastinum of the patient and the pulse generator is configured to deliver pacing pulses to a heart via the first and second electrodes.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: August 1, 2017
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Paul J. DeGroot, Rick D. McVenes
  • Patent number: 9713712
    Abstract: A system for electrically stimulating a user comprising: a first housing portion defining an array of openings; an array of permeable bodies with portions exposed through the array of openings and wetted with a solution that facilitates electrical coupling between the system and a body region of the user, wherein each permeable body has a cavity at a proximal portion and a distal portion and is configured to transmit the solution to the body region of the user; a substrate region defining an array of protrusions configured to support the array of permeable bodies and composed of a conductive polymer; and a set of conductors in communication with the substrate region and including a first conductor that provides a first subset of the array of permeable bodies with a first polarity and a second conductor that provides a second subset of the array of permeable bodies with a second polarity.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: July 25, 2017
    Assignee: Halo Neuro, Inc.
    Inventors: Brett Wingeier, Tal Bar-Or, Colin Davis, Victoria Hammett, Randall Lin
  • Patent number: 9707035
    Abstract: Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: July 18, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Howard R. Levin, Mark Gelfand, Nicolas Zadno
  • Patent number: 9706937
    Abstract: Cardiac catheterization is carried out using a probe having sensing electrodes disposed on a distal portion thereof, placing the sensing electrodes in galvanic contact with respective locations in an atrium of the heart, thereafter acquiring electrograms from the sensing electrodes while concurrently detecting ventricular depolarization events, generating from the electrograms a time-varying electroanatomic map showing electrical propagation in the heart, and displaying the electroanatomic map in a series of visual images, the images including an icon that visually indicates the ventricular depolarization events.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: July 18, 2017
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventor: Tamir Avraham Yellin
  • Patent number: 9700713
    Abstract: The present invention relates to active implantable medical stimulation devices. An active implantable medical stimulation device comprises an electrically non-conductive support member, one or more electrically conductive stimulation electrodes disposed on the support member and a cover covering the support member and the one or more electrodes. At locations where the cover covers the electrodes, the cover comprises one or more openings dimensioned such that the one or more openings which facilitate electrical conduction to allow stimulation of tissue and/or measurement of electrical signal s by the electrodes while preventing tissue ingrowth. The support member can be of an advantageous structure, that would not be usable without the cover since tissue in-growth would not allow the removal of the implant. At the same time, the cover still allows the stimulation of the tissue so that the functionality of the device is not prevented by the cover.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: July 11, 2017
    Assignee: SALUDA MEDICAL PTY LIMITED
    Inventors: David Robinson, Mark Fretz, David Thomas, John Luis Parker
  • Patent number: 9700720
    Abstract: A cochlear implant system comprising an external component having an external speech processor unit, and an internal component. The speech processor unit monitors one or more parameters, and the speech processor unit is configured to reduce the power consumption of the cochlear implant system in the absence of one or more parameters.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: July 11, 2017
    Assignee: Cochlear Limited
    Inventor: Peter Scott Single
  • Patent number: 9675258
    Abstract: A computer readable storage medium configured to cause a system to perform operations of computing the standard deviation of a plurality of K?1 most recent heart beat intervals and a current heart beat interval (I1) from a plurality of consecutive heart beat intervals, from a sum (S1) of K most recent heart beat intervals squared and the sum (S2) of the K most recent heart beat intervals and a Kth oldest heart beat interval (I2). The computer readable storage medium calculates an updated sum (S1?) of S1 minus I2 squared plus I1 squared and the updated sum (S2?) of S2 minus I2 plus I1, and a square root of the sum of the ratio of S1? to K and of the ratio of the square of S2? to the square of K.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: June 13, 2017
    Assignee: FUJITSU LIMITED
    Inventor: Stergios Stergiou
  • Patent number: 9675413
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for percutaneous intravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: June 13, 2017
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark E. Deem, Hanson Gifford, III, Denise Zarins, Douglas Sutton, Erik Thai, Mark Gelfand, Howard R. Levin
  • Patent number: 9656089
    Abstract: A method for programming a neurostimulator includes automatically performing a series of steps. One or more control elements may be actuated to select the series of steps from a plurality of series of steps stored in a memory of an external control device. One or more control elements may be actuated during the performance of the series of steps in order to cause one of the steps to pause, stop, restart, skip, or repeat. The series of steps may be a series of pre-programming steps, and the method may further include programming the neurostimulator after the series of pre-programming steps is performed. An external device for programming the neurostimulator includes control circuitry configured for automatically performing the series of steps, and a user interface including the one or more control elements configured for being actuated. The control device also includes the memory for storing the plurality of series of steps.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 23, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Anita Yip, Prakash Rao, Dennis Zottola
  • Patent number: 9656071
    Abstract: A method for adjusting parameters of a hearing prosthesis system includes adjusting a control to shift an audiogram associated with a first stimulator, applying a prescription rule using the shifted audiogram to adjust a cross-over frequency that defines a first frequency range and a second frequency range. The first stimulator is configured to apply stimulation signals in the first frequency range and a second stimulator is configured to apply stimulation signals in the second frequency range. The method also includes applying the prescription rule using the shifted audiogram to determine gain and maximum power output (MPO) levels for the first frequency range associated with the first stimulator.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 23, 2017
    Assignee: Cochlear Limited
    Inventors: Stefan Lievens, Thomas Stainsby, Rami Banna, Christopher J. James
  • Patent number: 9655535
    Abstract: A system and method to target a biological rhythm disorder, such as a heart rhythm disorder include processing cardiac signals via a computing device to determine a shape in a region of tissue defined by a source associated with the biological rhythm disorder that migrates spatially on or within the shape, and identifying at least one portion of the tissue proximate to the shape to enable selective modification of the at least one portion of tissue in order to terminate or alter the heart rhythm disorder.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: May 23, 2017
    Assignees: The Regents of the University of California, Topera, Inc., The United States of America as Represented by the Department of Veterans Affairs
    Inventors: Sanjiv Narayan, Carey Robert Briggs