Patents Examined by Melissa J Koval
  • Patent number: 10393795
    Abstract: Unique systems, methods, techniques and apparatuses of semiconductor failure prognostication. One exemplary embodiment is a power converter comprising a semiconductor switch and a converter control system. The converter control system is configured to turn on the semiconductor switch, measure a first voltage and a current during reverse conduction, estimate junction temperature of the semiconductor device, turn off the semiconductor device, measure a second voltage after turning off the semiconductor device, determine a resistance value using the second voltage measurement, determine an expected resistance value, predict a failure of the semiconductor device using the resistance value and the expected resistance value, and transmit a semiconductor device failure warning.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: August 27, 2019
    Assignee: ABB Schweiz AG
    Inventors: Eddy Aeloiza, Arun Kadavelugu, Joonas Puukko, Liming Liu, Jukka-Pekka Sjoroos
  • Patent number: 10393548
    Abstract: A linear motor system that includes a field system in which magnets are arrayed such that polarities are alternately different, armatures, a magnetic detector which includes first, second and third hall elements, and in which an electrical angle phase of the third hall element is shifted from that of the first hall element by 90° and an electrical angle phase of the second hall element is shifted from that of the first hall element by 180°, and a calculator which calculates a first electrical angle from outputs of the first and the third hall elements, calculates a second electrical angle from outputs of the second and the third hall elements, and calculates an estimated value of an electrical angle by weighting is provided. An electrical angle with a larger amplitude between the first and the second electrical angles is multiplied by a relatively larger coefficient value.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: August 27, 2019
    Assignee: Murata Machinery, Ltd.
    Inventors: Tetsuya Shimizu, Yasutake Yamada, Kenji Kadoguchi, Shogo Terada
  • Patent number: 10393828
    Abstract: An interdigitated Y-axis magnetoresistive sensor, comprising a substrate, and located on the substrate is a first comb-shaped soft ferromagnetic flux guide, a second comb-shaped soft ferromagnetic flux guide, and a push-pull magnetoresistive bridge sensing unit. It also may include a calibration and/or an initialization coil. The first and the second comb-shaped soft ferromagnetic flux guides are formed into an interdigitated shape. The gaps between a second comb tooth and two adjacent the first comb teeth are the first gap and the second gap. Furthermore, a pair of gaps are formed between the second come tooth and the base of the first comb as well as between the first comb tooth and the second comb tooth base. A push magnetoresistive unit string and a pull magnetoresistive unit string are alternately placed in the first gap and the second gap, respectively. The resulting magnetoresistive sensing unit senses the magnetic field along the X-axis.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 27, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10393554
    Abstract: A security system having a magnetic displacement sensor system and an analytics system. The magnetic displacement sensor system includes a displacement sensor for detecting a magnetic field strength from a magnet. The analytics system determines a status of the magnetic displacement sensor system based on a comparison of the detected magnetic field strength and a profile for the magnetic displacement sensor system.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: August 27, 2019
    Assignee: SENSORMATIC ELECTRONICS, LLC
    Inventors: Richard John Campero, Miguel Galvez
  • Patent number: 10393787
    Abstract: A C/N ratio detection circuit includes a voltage detector, an averaging section, a time variation range calculator, and a C/N ratio calculator. The voltage detector measures an input voltage of a signal. The averaging section calculates an average of the input voltage over a predetermined time. The time variation range calculator calculates a time variation range of the input voltage over the predetermined time. The C/N ratio calculator calculates a C/N ratio of the signal by using the average and time variation range of the input voltage.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: August 27, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Tomoyasu Fujishima
  • Patent number: 10393794
    Abstract: An apparatus includes a platform and a test board mounted on the platform. The platform generally comprises (i) a transducer array configured to generate ultrasonic vibrations and (ii) a controller configured to control the transducer array in response to measurements of moisture content of air around the platform. The test board may be configured to apply test signals to and receive test responses from a semiconductor device under test. The platform may be configured to utilize the ultrasonic vibrations to inhibit frost formation between the semiconductor device under test and a test header providing a low temperature test condition.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: August 27, 2019
    Assignee: Ambarella, Inc.
    Inventors: Chia Chieh Tunmu, Kun-Jung Kuo
  • Patent number: 10386405
    Abstract: A method is provided for performing continuous single insertion semiconductor testing of a group of semiconductors that are divided into a first subgroup and a second subgroup at multiple different temperatures. The single insertion semiconductor testing is performed by sequentially executing testing cycles, characterized by the tester alternately executing temperature testing periods and temperature ramping periods for the first subgroup, while simultaneously executing temperature ramping periods and temperature testing periods for the second subgroup. The temperature testing periods operate at two or more different temperatures. The single insertion testing sequence entirely eliminates tester index time when the testing time is equal to or greater than the ramping times, and substantially reduces tester index time when the testing time is less that the ramping times.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: August 20, 2019
    Assignee: CELERINT, LLC
    Inventor: Howard H. Roberts, Jr.
  • Patent number: 10386416
    Abstract: A system for magnetic/impedance burst testing of large electric motors to determine broken rotor bar defect. The system being a portable tester and includes a Signal Processor, a single-phase power source VAC, an AC/DC boost converter connected to the power source, at least one energy storage device connected to the AC to DC boost converter, a Pulse Width Modulated drive module (PWM) connected to the at least one energy storage device, and a series of at least three switches (IPM) using switch/level boost-type PWM rectification. The burst test is repeated until a full rotation of magnetic angles are tested and recorded with the Signal Processor. Rotor impedance versus magnetic angle of the full rotation is verified in order to check for failure, and broken rotor bar defect is determined when a shift in measured stator's impedance/admittance level for any of the given magnetic angles is identified by the Signal Processor.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 20, 2019
    Assignee: AVO MULTI-AMP CORPORATION
    Inventor: Craig Powers
  • Patent number: 10386426
    Abstract: A detection of a failure of a phase (as a method and apparatus) in a system—supplied by multiple phases—including a DC link (5) is suggested. A rectified voltage (10) of the DC link (5) pulses at a multiple of the mains frequency as a fundamental wave. The rectified voltage (10) is filtered for detecting a signal component at the double frequency of the mains frequency (12). The rectified voltage (10) is also “filtered” for detecting an average link voltage (14). A ratio signal (17) is formed as a ratio of the average link voltage (14) to the signal component at the double frequency of the mains frequency (12). An error detection signal (19) results from a comparison of the ratio signal (17) with an error threshold (20).
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 20, 2019
    Assignee: Schmidhauser AG
    Inventor: Andreas Schrepfer
  • Patent number: 10386409
    Abstract: One or more contacts are detected in an electron microscope image corresponding to a region of interest on an integrated circuit. One or more standard cells are identified based on the detected one or more contacts in the electron microscope image. One or more components of the integrated circuit are determined based on the identified one or more standard cells.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: August 20, 2019
    Assignee: International Business Machines Corporation
    Inventors: Lynne M. Gignac, Chung-Ching Lin, Franco Stellari
  • Patent number: 10386312
    Abstract: Provided in some embodiments are systems and methods for measuring the water content (or water-cut) of a fluid mixture. Provided in some embodiments is a water-cut sensor system that includes a helical T-resonator, a helical ground conductor, and a separator provided at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: August 20, 2019
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Muhammad Akram Karimi, Atif Shamim, Muhammad Arsalan
  • Patent number: 10386422
    Abstract: The invention pertains to a method of determining the State of Health (SoH) and/or State of Charge (SoC) of a rechargeable battery during use of said battery, the method comprising the steps of: generating a first excitation signal within a first selected frequency range, generating a second excitation signal within a second selected frequency range, applying said first and second excitation signals on said rechargeable battery, measuring the response signal for each of said two excitation signals, and then calculate the Electrochemical Impedance (El) as the ratio between the excitation signals and respective response signals, and then determine the SoH and/or SoC of the rechargeable battery by comparing the calculated El to a circuit model for the battery and/or determining the SoH and/or SoC of the rechargeable battery by directly evaluating characteristics of the El. The invention also pertains to a battery management system configured for executing the steps of the method according to the invention.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: August 20, 2019
    Assignee: LITHIUM BALANCE A/S
    Inventors: Andreas Elkjaer Christensen, Rasmus Rode Mosbaek
  • Patent number: 10386281
    Abstract: A fluid sensor (10) comprises a base member (20) defining a fluid flow path (21), a cavity filler member (26) located externally of the base member (20), and a cavity member (30) located externally of the base member (20) and the cavity filler member (26). The cavity member (30) is configured so as to provide confinement for an electromagnetic field. The base member (20) and the cavity filler member (26) are both configured so as to permit transmission of electromagnetic radiation at a frequency of the electromagnetic field therethrough. The electromagnetic field may be a radio frequency (RF) electromagnetic field. The base member (20) and/or the cavity member (30) may define an outer cavity region externally of the base member (20). The cavity filler member (26) may completely or partially fill the outer cavity region. The fluid sensor (10) may be used in the measurement of the composition and/or flow characteristics of a fluid in the fluid flow path (21).
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: August 20, 2019
    Assignee: M-Flow Technologies Ltd
    Inventor: Giles Edward
  • Patent number: 10386423
    Abstract: Methods, devices, and systems are disclosed for determining certain thermal properties of electrochemical devices that contain an electrolyte. From these properties, useful information can be determined about the electrical device. For example, the state-of-health of lithium ion batteries and other electrochemical devices can be determined.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: August 20, 2019
    Assignee: NOVONIX BATTERY TESTING SERVICES INC.
    Inventors: Ryan Day, Jeff Dahn
  • Patent number: 10386530
    Abstract: A coaxial nuclear magnetic resonance (NMR) probe and related methods are described herein. The coaxial NMR probe includes a housing with a fluid inlet, a fluid outlet, a longitudinal axis, and an interior volume. The housing contains a fluid sample that is analyzed by the probe. The coaxial NMR probe also includes an elongated conductor disposed along the longitudinal axis of the housing. The elongated conductor generates an oscillating electromagnetic field within the interior volume of the housing. The oscillating electromagnetic field produces a NMR signal within the fluid sample. The elongated conductor may also be used to receive this NMR signal. The NMR signal is then analyzed to determine information about the fluid sample. Various NMR pulse sequences for use with this coaxial probe and other coaxial probes are also described herein.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 20, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Yi-Qiao Song, Soumyajit Mandal, Yiqiao Tang, Martin D. Hurlimann, Jeffrey Paulsen
  • Patent number: 10379156
    Abstract: An integrated circuit testing system includes a conductive structure, a conductive pad electrically connected with the conductive structure, a test circuit electrically connected with the conductive pad, a conductive line electrically connected with the conductive structure, the conductive line being configured to be connected with a ground, and a controller coupled with the test circuit. The controller is configured to selectively cause the test circuit to supply a voltage to the conductive structure via the conductive pad. The test circuit is configured to provide feedback to the controller indicative of whether the conductive structure is electrically connected with the conductive pad.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: August 13, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chewn-Pu Jou, Min-Jer Wang
  • Patent number: 10379183
    Abstract: A magnetic moment arrangement calculation method for magnetic field adjustment by combining correction of a component of a low-order mode with correction of a component of a high-order mode among the eigenmodes so as to calculate arrangement of the magnetic moment for approximately correcting the error magnetic field distribution, in which the low-order mode is an eigenmode group from the first of eigenmode numbers assigned to respective eigenmodes in the magnitude order of singular values to an eigenmode number specified by a first threshold value, in which the high-order mode is an eigenmode group with an eigenmode number more than the first threshold value, and in which a correction amount of the component of the high-order mode is smaller than a correction amount of the component of the low-order mode.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: August 13, 2019
    Assignee: HITACHI, LTD.
    Inventors: Hikaru Hanada, Kenji Sakakibara, Mitsushi Abe, Takuya Fujikawa
  • Patent number: 10379176
    Abstract: A single-chip high-magnetic-field X-axis linear magnetoresistive sensor with a calibration and an initialization coil, comprising a high magnetic field single-chip referenced bridge X-axis magnetoresistive sensor, a calibration coil, and an initialization coil, wherein the calibration coils are planar coils, and the initialization coils are planar or three-dimensional coils. The planar calibration coils and the planar initialization coils can be placed above a substrate and below the magnetoresistive sensor units, between the magnetoresistive sensor units and the soft ferromagnetic flux guides, above the soft ferromagnetic flux guides, or at gaps between the soft ferromagnetic flux guides. The three-dimensional initialization coil is wound around the soft ferromagnetic flux guides and magnetoresistive sensor units.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: August 13, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10379164
    Abstract: A method for magnetic/impedance burst testing of large electric motors to determine broken rotor bar defect. The method providing a portable tester and includes a Signal Processor, a single-phase power source VAC, an AC/DC boost converter connected to the power source, at least one energy storage device connected to the AC to DC boost converter, a Pulse Width Modulated drive module (PWM) connected to the at least one energy storage device, and a series of at least three switches (IPM) using switch/level boost-type PWM rectification. The burst test is repeated until a full rotation of magnetic angles are tested and recorded with the Signal Processor. Rotor impedance versus magnetic angle of the full rotation is verified in order to check for failure, and broken rotor bar defect is determined when a shift in measured stator's impedance/admittance level for any of the given magnetic angles is identified by the Signal Processor.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 13, 2019
    Assignee: AVO MULTI-AMP CORPORATION
    Inventor: Craig Powers
  • Patent number: 10379142
    Abstract: To enable in a circuit arrangement (8) with a transformer with center tap the voltage measurement on the secondary side simply and safely, it is provided that at least two series-connected resistors (R3, R4) are connected between the two outer connections (A1, A2) of the secondary side of the transformer (T) to form a measurement point (P) between the two resistors (R3, R4), and a voltage measurement unit (V) is provided to measure the voltage (UP) between the measurement point (P) and the second output pole (13), which corresponds to the output voltage (UA).
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: August 13, 2019
    Assignee: FRONIUS INTERNATIONAL GMBH
    Inventors: Christian Magerl, Franz Peter Musil, Robert Eberl, Friedrich Steinmaurer