Patents Examined by Michael D'Abreu
  • Patent number: 10105096
    Abstract: Provided is a biological observation apparatus including irradiating portions that radiate illumination light onto biological tissue, an imaging portion that, of reflected light reflected at the biological tissue due to the illumination light radiated by the irradiating portions, captures reflected light in a wavelength band in which an absorption characteristic of ?-carotene is greater than an absorption characteristic of hemoglobin, thus acquiring a reflected-light image, and a display portion that displays the reflected-light image acquired by the imaging portion.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: October 23, 2018
    Assignee: OLYMPUS CORPORATION
    Inventor: Koki Morishita
  • Patent number: 10105538
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: October 23, 2018
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Paula M. Kaplan, Adam K. Hoyhtya, Wondimeneh Tesfayesus, Robert E. Atkinson
  • Patent number: 10098556
    Abstract: The present disclosure introduces systems and methods to measure fluid in a body segment. In one embodiment, a computer system used to measure fluid in a body segment is described. A current generation module may be used to emit an electrical through at least one body segment. The electrical current may be used to measure fluid-volume content of the at least one body segment. An electrode module having a plurality of electrodes may be attached to the current generation module. A signal-processing module may be used to measure changes in the electrical current through at least one body segment. Further, an impedance module may be used to calculate fluid-volume change in at least one body segment and determine the flow of fluid through the at least one body segment. Other embodiments also are described.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: October 16, 2018
    Assignee: King Saud University
    Inventor: Mamdouh Monif Monif
  • Patent number: 10092268
    Abstract: Method and apparatus for quantitative and qualitative determination of heart rate, stroke volume, cardiac output, and central fluid volume. Phonocardiography based technique using multiple transducers and multi-sensor processing algorithms provides a non-invasive method of evaluating the output of the heart. This basic system coupled with additional sensor elements provides a wide range of potential capabilities. A system comprising these techniques in a wearable form provides a non-invasive method of determining hydration status and blood volume status. Phonocardiography augmented with multi-sensor signal processing techniques improves signal quality to analyze heart sounds and associated features (e.g. S1 and S2, amongst others). Noise compensation and cancellation techniques for phonocardiography further improve signal to noise ratio to reject external disturbances.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: October 9, 2018
    Assignee: INNOVITAL LLC
    Inventors: William Krimsky, Ashish Purekar, Gregory Hiemenz
  • Patent number: 10076258
    Abstract: Medical devices and methods for using medical devices are disclosed. An example mapping medical device may include a catheter shaft with a plurality of electrodes. The plurality of electrodes may include a first pair of electrodes, a second pair of electrodes, a third pair of electrodes and a fourth pair of electrodes. The mapping medical device may further include a processor, wherein the processor may be configured to determine a first latency between the first pair of electrodes, determine a second latency between the second pair of electrodes, determine a third latency between the third pair of electrodes, determine a fourth latency between the fourth pair of electrodes, and determine a target signal by interpolating the first latency, the second latency, the third latency and the fourth latency.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: September 18, 2018
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Pramodsingh Hirasingh Thakur, Barun Maskara, Shibaji Shome, Allan C. Shuros, Shantha Arcot-Krishnamurthy, Sunipa Saha
  • Patent number: 10064567
    Abstract: Systems, methods, and graphical user interfaces are described herein for identification of optimal electrical vectors for use in assisting a user in implantation of implantable electrodes to be used in cardiac therapy. Cardiac improvement information may be generated for each pacing configuration, and one or more pacing configuration may be selected based on the cardiac improvement information. Optimal electrical vectors using the selected pacing configurations may be identified using longevity information generated for each electrical vector. Electrodes may then be implanted for use in cardiac therapy to form the optimal electrical vector.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: September 4, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Subham Ghosh, Jeffrey Gillberg, Manfred Justen, Eric Schilling
  • Patent number: 10058272
    Abstract: The sleep monitoring system uses a motion vector estimator to determine motion vectors as a function of location in camera images. A signal processing system with an input coupled to the motion vector estimator computes a measure of turning motion, by summing motion vectors from respective locations within an image. Pose changes are detected based on the measure of turning motion. The measure of turning motion may be computed from a sum of components of the motion vectors that are normal to the major axis of a body area in the image, which is determined based on image content changes in a set of images from the camera. To avoid false turning detection due to leg kicking or similar motion the detected turning motion may be reduced to zero if it is not detected in a sufficiently large part of the body area.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: August 28, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Adrienne Heinrich, Henriette Christine Van Vugt, Vincent Jeanne
  • Patent number: 10055548
    Abstract: An automatic external defibrillator (AED) is described which is designed for use in a single cardiac emergency. If the AED is in standby for a year without being deployed, the AED is removed from service and replaced with another AED. The AED requires a rescuer only to deploy the electrodes on the torso of the victim; the AED turns itself on, performs rhythm analysis and delivers a shock if needed automatically. The AED thus requires no user controls. Preferably the AED requires no on-site maintenance, as the AED communicates its readiness for use to a remote monitoring site which responds to any problems detected by self-testing. In addition to its electro-resuscitation function, the AED can be used on the chest of the victim to administer CPR compressions.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: August 21, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dawn Blilie Jorgenson, Catherine Ann Thompson
  • Patent number: 10046160
    Abstract: Disclosed is a method for treating dermis and hypodermis by placing at least a first electrode at the surface of a to-be-treated skin region and contacting a second electrode at another position on the body to be treated then applying between the electrodes a current with pulse component, said current being sufficient to produce electro-osmotic pressure/velocity wavefronts corresponding to the fundamental frequency in blood vessels in the dermis and hypodermis of the skin region.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 14, 2018
    Assignee: NSE Products, Inc.
    Inventor: Dale G. Kern
  • Patent number: 10039502
    Abstract: A method of mapping electrophysiological information, including receiving imaging information for a tissue region; receiving a monophasic action potential signal from the tissue region; assigning a value corresponding to a depolarization segment of the monophasic action potential signal; receiving location information associated with the monophasic action potential signal; and generating an image based on the imaging information, the assigned value, and the location information.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: August 7, 2018
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Mark T. Stewart, Scott W. Davie, Giles Desrochers
  • Patent number: 10039923
    Abstract: This disclosure provides systems and methods for delivering a neural stimulation pulse. A neural implant device can include an energy harvesting circuit configured to receive an input signal and generate an electrical signal based on the received input signal. A diode rectifier in series with the energy harvesting circuit can rectify the electrical signal. The energy harvesting circuit and the diode rectifier can be encapsulated within a biocompatible electrically insulating material. A neural electrode can be exposed through the biocompatible electrically insulating material. The neural electrode can be configured to deliver a neural stimulation pulse. The neural implant device can have a volume that is less than about 1.0 cubic millimeter.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: August 7, 2018
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Jonathan Bernstein, Daniel Freeman, Reed Irion, Brett Ingersoll, Amy Duwel, Andrew Czarnecki, Brian Daniels, Anilkumar Harapanahalli Achyuta, Bryan McLaughlin
  • Patent number: 10022480
    Abstract: The invention relates to a method of controlling the speed of a ventricular assist device, in particular the rotational speed of a rotary blood pump, wherein at least temporarily the speed of the device is modulated around a mean speed and a response of the native heart to this modulation is measured to determine the ventricular function/contractile state of the heart, in particular to determine whether the aortic valve opens and closes at the instant mean speed, and the mean speed is set, in particular a new mean speed is set in dependence of the measured response. The invention furthermore relates to a device performing the method.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: July 17, 2018
    Assignee: REINHEART GMBH
    Inventors: Nicholas Greatrex, Ulrich Steinseifer
  • Patent number: 10022549
    Abstract: A system for transferring power to, and communicating with, at least one body-implantable active device includes an external power transfer system associated with an external device disposed outside of a body, operable to transfer power through a dermis layer to each body-implantable active device, and communicate data to and from each body-implantable active device, and also includes a power receiving system associated with each body-implantable active device, operable to receive power transferred from the external power transfer system, and communicate data to and from the external power transfer system. The body-implantable active device may include an implantable neurostimulation system.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: July 17, 2018
    Assignee: Syntilla Medical LLC
    Inventors: Harry Dellamano, Paul Griffith, Francis M. Menezes
  • Patent number: 10016136
    Abstract: An optical cannula configured for implantation in biological tissue or other samples provides minimal invasiveness while accessing image deep structures within the sample. The cannula has a stabilizer portion that is used to affix the cannula to the sample, and an extension portion that protrudes into the sample and is either formed by, or contains, an optical probe that images a target area within the sample to an object image provided to an external optical device. The cannula has an integrated coupler portion that detachably connects to a connector of the external device, providing removable and interchangeable connection to external optical systems.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: July 10, 2018
    Assignee: OPTOMAK, INC.
    Inventors: Jonatan Labrie, Harold Dehez, Sead Doric
  • Patent number: 10016611
    Abstract: A DC-DC converter for implantable medical devices includes a switch capacitor converter core including a plurality of power transistor switches configured to receive an input voltage and output an output voltage; a switch driver connected with the switch capacitor converter core and configured to turn on corresponding power transistor switches in the switch capacitor converter core so as to supply power to a load receiving the output voltage; a switch signal router connected with the switch driver and configured to selectively transmit signals required by the switch driver; a gain selection decoder connected with the switch signal router; a gain controller connected with the gain selection decoder, the gain selection decoder being configured to decode gain selection instructions transmitted from the gain controller; an input adjusting device connected with the gain controller and configured to receive the input voltage and a reference voltage, to indicate relationship between the input voltage and the referen
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: July 10, 2018
    Assignee: SHENZHEN DANSHA TECHNOLOGY CO., LTD.
    Inventor: Min Tan
  • Patent number: 10004448
    Abstract: Provided is an apparatus for measuring the thickness, roughness, and morphology index of the mandibular cortical bone using a dental panorama image to assist in the diagnosis of osteoporosis, wherein the thickness, roughness, and morphological index of the cortical bone is measured more accurately and the diagnosis of osteoporosis can be supported more accurately. An osteoporosis diagnostic support apparatus, wherein the apparatus has a contour extraction unit adapted to extract a mandibular contour from an image of a mandibular cortical bone photographed by a photographic apparatus adapted to photograph the mandibular cortical bone and surroundings thereof, a line segment extraction unit adapted to extract line segments from the image of the mandibular cortical bone photographed by the photographic apparatus; and a cortical bone thickness calculation unit adapted to calculate a thickness of the cortical bone based on the extracted mandibular contour and line segments.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: June 26, 2018
    Assignee: Media Co., Ltd.
    Inventors: Hironobu Tsuji, Yosuke Tsuji, Tatsuro Hayashi, Hiroshi Fujita, Takeshi Hara, Chisako Muramatsu, Kazuki Horiba, Akitoshi Katsumata
  • Patent number: 10004901
    Abstract: Systems and methods for treating a neurological disorder comprising determining a first set of neural stimulation parameters capable of treating a first subset of symptoms, determining a second set of neural stimulation parameters capable of treating a second subset of symptoms, and applying a neural stimulation therapy based upon the first set of neural stimulation parameters and the second set of neural stimulation parameters to the patient. The first set of neural stimulation parameters can include electrical stimulation at a first frequency, and the second set of neural stimulation parameters can include electrical stimulation at a second frequency. In other embodiments, a treatment method comprises applying a first neural stimulation therapy to the patient in a continuous or generally continuous manner during a first time interval, and applying a second neural stimulation therapy to the patient in a noncontinuous or interrupted manner following the first time interval.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: June 26, 2018
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Bradford Evan Gliner
  • Patent number: 9999712
    Abstract: A peristaltic pump includes a driver, a pump body, a hose, a rotor and a connecting member. The driver includes a supporting shaft. The pump body includes a chamber housing the rotor. The hose is assembled to an internal side of a wall of the chamber. The connecting member connects the driver with the rotor, and is received in the chamber. The rotor is configured to sequentially squeeze the hose to cause medium in the hose to flow. The connecting member and the rotor rotate about and are supported by the supporting shaft. The medical peristaltic pump has a simple structure and is easy to operate.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: June 19, 2018
    Assignee: JOHNSON ELECTRIC S.A.
    Inventors: Yue Fu Zhu, Mohanlal Ramadoss
  • Patent number: 9993172
    Abstract: Systems, methods, and interfaces are described herein for assisting a user in noninvasive evaluation of patients for cardiac therapy and noninvasive evaluation of cardiac therapy being delivered. The systems, methods, and interfaces may provide graphical representations of cardiac electrical activation times about one or more portions of human anatomy and one or more cardiac health metrics.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: June 12, 2018
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey Gillberg, Subham Ghosh
  • Patent number: 9993639
    Abstract: This disclosure describes techniques for securing an elongated member, such as a medical lead, within a tissue of a patient. In particular, suction is applied from a vacuum to a vacuum cavity located proximate to a distal end of the lead to draw in tissue from the target therapy delivery site to the vacuum cavity. A fixation element is coupled to the tissue within the vacuum cavity to fix the lead to the target therapy delivery site. The fixation techniques of this disclosure secure the medical lead to the tissue of the patient to prevent the medical lead from migrating away from the target tissue location.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: June 12, 2018
    Assignee: Medtronic, Inc.
    Inventor: Martin T. Gerber