Patents Examined by Michael J Kachmarik
  • Patent number: 11021766
    Abstract: A method and apparatus for producing direct reduced iron (DRI), including: generating a reducing gas in a coal gasifier using coal, oxygen, steam, and a first coke oven gas (COG) stream as inputs to the coal gasifier; and delivering the reducing gas to a shaft furnace and exposing iron ore agglomerates to the reducing gas to form metallic iron agglomerates. The method further includes delivering a second COG stream directly to the shaft furnace.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: June 1, 2021
    Assignee: Midrex Technologies, Inc.
    Inventors: Haruyasu Michishita, John Winter
  • Patent number: 11021774
    Abstract: There are provided a copper alloy plate having high strength, high electrical conductivity, a high bending deflection coefficient, and excellent stress relaxation characteristics, and an electronic component preferred for high current applications or heat dissipation applications. A copper alloy plate comprising 0.8 to 5.0% by mass of one or more of Ni and Co and 0.2 to 1.5% by mass of Si, with the balance being copper and an unavoidable impurity, having a tensile strength of 500 MPa or more, and having an A value of 0.5 or more, the A value being given by the following formula: A=2X(111)+X(220)?X(200) X(hkl)=I(hkl)/I0(hkl) wherein I(hkl) and I0(hkl) are diffraction integrated intensities of a (hkl) face obtained for a rolled face and a copper powder, respectively, using an X-ray diffraction method.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: June 1, 2021
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Takaaki Hatano
  • Patent number: 10994056
    Abstract: A device for fixing biological soft tissue is endowed with strength and deformation performance for being used as a device for coupling biological soft tissue that has been cut or separated due to an incision or the like during a surgical procedure, and is completely degraded in vivo and discharged after adhesion of the soft tissue or after healing of the incision tissue. The device is composed of a ternary Mg alloy material of Mg—Ca—Zn. In the Mg alloy material, the Ca and Zn are contained within the solid-solubility limit with respect to the Mg. The remainder is composed of Mg and unavoidable impurities. The Zn content is 0.5 at % or less. The Ca and Zn content has a relationship of Ca:Zn=1:x (where x is 1 to 3) by atom ratio. The crystal grain structure is equiaxed, the crystal grain size according to linear intercept being 30 to 250 ?m.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: May 4, 2021
    Assignee: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Toshiji Mukai, Naoko Ikeo, Eisei Gu, Takumi Fukumoto, Hikaru Yabuuchi
  • Patent number: 10988833
    Abstract: A Ni—Al-RE ternary eutectic alloy and a preparation method thereof are provided. The alloy is composed of the following elements by weight percent, aluminum (Al) of 2.50% to 19.50%, rare earth (RE) of 1.30% to 20.0%, other impurity elements being less than or equal to 0.10%, and the rest being nickel (Ni). The microstructure of the alloy is in a completely eutectic form, and the density is 6.8 to 7.1 g/cm3. Raw materials are prepared according to the ratio, and are placed into a vacuum induction smelting furnace; the smelting furnace is vacuumized to 10?5 Pa, power is increased to ensure complete melting of the raw materials, and the molten alloy melt is poured into an iron mold to obtain alloy ingots. The eutectic phase in the microstructure of the alloy in the disclosure has high hardness.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: April 27, 2021
    Assignee: SHANGHAI JIAO TONG UNIVERSITY
    Inventors: Jun Wang, Yun Wu, Maodong Kang, Haiyan Gao, Shuxian He, Yahui Liu
  • Patent number: 10981226
    Abstract: A copper alloy powder is a copper alloy powder for additive manufacturing. The copper alloy powder contains more than 1.00 mass % and not more than 2.80 mass % of chromium, and a balance of copper. A method for producing an additively-manufactured article includes a first step of preparing a copper alloy powder containing more than 1.00 mass % and not more than 2.80 mass % of chromium and a balance of copper and a second step of producing the additively-manufactured article from the copper alloy powder, and the additively-manufactured article is produced such that forming a powder layer including the copper alloy powder, and solidifying the copper alloy powder at a predetermined position in the powder layer to form a shaped layer are sequentially repeated to stack such shaped layers to thus produce the additively-manufactured article.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: April 20, 2021
    Assignees: DAIHEN CORPORATION, Osaka Research Institute of Industrial Science and Technology
    Inventors: Ryusuke Tsubota, Yohei Oka, Akira Okamoto, Takayuki Nakamoto, Takahiro Sugahara, Naruaki Shinomiya, Mamoru Takemura, Sohei Uchida
  • Patent number: 10974322
    Abstract: Example described herein include a three-dimensional printer a threedimensional printing device that includes a fusible material applicator to apply a layer of fusible material, a inhibiting material applicator to apply a patterned layer of inhibiting material to establish exposed regions of the layer of fusible material and blocked regions of the layer of fusible material based on information corresponding to a three-dimensional model, and a photonic energy emitter to apply photonic energy to fuse the exposed regions of the layer of fusible material.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 13, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Krzysztof Nauka, Sivapackia Ganapathiappan, Howard S Tom, Kristopher J Erickson
  • Patent number: 10954576
    Abstract: A high-strength steel having a specified chemical composition, wherein parameter Peff is 0.050% or more, the relationship (TS0?TS)/TS0?0.050 is satisfied, wherein TS is defined as tensile strength determined at a temperature of 350° C. after aging has been performed under the condition of a Larson-Miller Parameter (LMP) of 15700, and wherein TS0 is defined as tensile strength determined at a temperature of 350° C. before the aging is performed, and having a toughness represented by a vE?20 of 100 J or more in a weld heat-affected zone, which is formed when welding is performed.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: March 23, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Shusaku Ota, Junji Shimamura, Nobuyuki Ishikawa, Shigeru Endo
  • Patent number: 10953465
    Abstract: The present invention relates to alloy compositions for 3D metal printing procedures which provide metallic parts with high hardness, tensile strengths, yield strengths, and elongation. The alloys include Fe, Cr and Mo and at least three or more elements selected from C, Ni, Cu, Nb, Si and N. Ni may be replaced with Mn. As built parts indicate a tensile strength of at least 1000 MPa, yield strength of at least 640 MPa, elongation of at least 3.0% and hardness (HV) of at least 375.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: March 23, 2021
    Assignee: The NanoSteel Company, Inc.
    Inventors: Charles D. Tuffile, Harald Lemke
  • Patent number: 10946449
    Abstract: The present disclosure relates to a device for melting a material without a crucible and for atomizing the melted material in order to produce powder, comprising: an atomizing nozzle; an induction coil having windings, which become narrower in the direction of the atomizing nozzle at least in some sections; and a material bar at least partially inserted into the induction coil. The induction coil is designed to melt the material of the material bar in order to produce a melt flow. The induction coil and the atomizing nozzle are arranged in such a way that the melt flow is or can be introduced into the atomizing nozzle through a first opening of the atomizing nozzle in order to atomize the melt flow by means of an atomizing gas, which can be introduced into the atomizing nozzle.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: March 16, 2021
    Assignee: NANOVAL GmbH & Co. KG
    Inventors: Lüder Gerking, Christian Gerking, Martin Stobik, Rico Heinz
  • Patent number: 10941469
    Abstract: The present disclosure relates to a martensitic stainless steel suitable for rock drill steel rods. Furthermore, the present disclosure also relates to the use of the martensitic stainless steel and to products manufactured thereof, especially drill rods.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: March 9, 2021
    Assignee: AB Sandvik Materials Technology
    Inventors: Anna Wennberg, Tomas Antonsson, Lars Nylof
  • Patent number: 10941619
    Abstract: An additive manufacturing method for making a metal matrix composite component includes melting a powdered mixture with an electron beam. The powdered mixture comprises powdered tungsten carbide in an amount of 45 wt % to 72 wt % of the powdered mixture and a powdered binder in an amount of 28 wt % to 55 wt % of the powdered mixture. The powdered binder comprises boron, silicon, and nickel.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: March 9, 2021
    Assignee: SEED TECHNOLOGIES CORP., LTD.
    Inventors: Yuehua Xu, Yuan Yuan, Bin Liu
  • Patent number: 10934610
    Abstract: Described are processes for shaping a hardened heat treatable, age-hardenable aluminum alloys, such as hardened 2XXX, 6XXX and 7XXX aluminum alloys, or articles made from such alloys, including aluminum alloy sheets. The processes involve heating the article, which may be in a form of a sheet or a blank, before and/or concurrently with a forming step. In some examples, the alloy is heated to a specified temperature in the range of 125-425° C. at a specified heating rate within the range of about 3-200° C./s, for example, 3-90° C./s or 90-150° C./s. Such a combination of the temperature and the heating rate can result in an advantageous combination of article properties.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: March 2, 2021
    Assignee: Novelis Inc.
    Inventors: Corrado Bassi, Etienne Combaz, Aude Despois, Pasquier Romain, Maude Fumeaux, Julie Richard
  • Patent number: 10920302
    Abstract: The invention relates to a cermet material comprising a first phase MAX having the general formula Tin+1AlCn and a second intermetallic phase having the general formula TixAly, where n equals 1 or 2, x is between 1 and 3, y is between 1 and 3, and x+y?4. The proportion by volume of the first phase in the material is between 70% and 95%. The proportion by volume of the second phase in the material is between 30% and 5%. The void ratio is less than 5%.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: February 16, 2021
    Assignee: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES (ONERA)
    Inventors: Aurelie Julian-Jankowiak, Gilles Hug
  • Patent number: 10920295
    Abstract: The present invention relates to alloy compositions for 3D metal printing procedures which provide metallic parts with high hardness, tensile strengths, yield strengths, and elongation. The alloys include Fe, Cr and Mo and at least three or more elements selected from C, Ni, Cu, Nb, Si and N. As built parts indicate a tensile strength of at least 1000 MPa, yield strength of at least 640 MPa, elongation of at least 3.0% and hardness (HV) of at least 375.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: February 16, 2021
    Assignee: The NanoSteel Company, Inc.
    Inventors: Charles D. Tuffile, Harald Lemke
  • Patent number: 10920309
    Abstract: A nitrided packaging steel in the form of a flat steel product and method for producing a nitrided packaging steel with a carbon content of 10-1000 ppm and uncombined nitrogen, dissolved in the steel, of more than 100 ppm. The nitriding is performed in two stages: a first stage, in which a molten steel is nitrided to a nitrogen content of at most 160 ppm by introducing a nitrogen-containing gas and/or a nitrogen-containing solid into the molten steel, and a second stage, in which a flat steel product produced from the nitrided molten steel by cold rolling is treated with a nitrogen-containing gas in order to increase further the amount of uncombined nitrogen in the flat steel product.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: February 16, 2021
    Assignees: ThyssenKrupp Rasselstein GmbH, ThyssenKrupp AG
    Inventors: Burkhard Kaup, Blaise Massicot, Dirk Matusch
  • Patent number: 10889881
    Abstract: An aluminum alloy pipe produced by porthole extrusion includes: Mg at a concentration equal to or higher than 0.7% (mass %, the same applies hereinafter) and lower than 1.5%; Ti at a concentration higher than 0% and equal to or lower than 0.15%; with the balance being Al and unavoidable impurities. As the unavoidable impurities, Si has a limited concentration of 0.20% or lower, Fe 0.20% or lower, Cu 0.05% or lower, Mn 0.10% or lower, Cr 0.10% or lower, and Zn 0.10% or lower. Difference between the maximum value and the minimum value of the Mg concentration in a lengthwise direction of the pipe is 0.2% or lower, and the average crystal grain size in a cross-section perpendicular to the lengthwise direction is 300 ?m or smaller. An aluminum alloy pipe used for piping or hose joints and having excellent strength, corrosion resistance, and processability can be provided.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 12, 2021
    Assignees: UACJ CORPORATION, UACJ EXTRUSION CORPORATION
    Inventors: Taichi Suzuki, Hidenori Hatta, Takumi Ishizaka
  • Patent number: 10875091
    Abstract: A method for manufacturing metal powder is provided. The method includes preparing first metal powder, agglomerating the first metal powder to manufacture second metal powder in which the first metal powder is agglomerated, coating the second metal powder with an organic binder, and agglomerating and coarsening the second metal powder coated with the organic binder to manufacture third metal powder having higher flowability than the second metal powder coated with the organic binder.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: December 29, 2020
    Assignees: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION, HANYANG UNIVERSITY ERICA CAMPUS
    Inventors: Jaisung Lee, Wookyung You
  • Patent number: 10870908
    Abstract: Age-hardening nickel-chromium-cobalt-titanium-aluminum wrought alloy with very good wear resistance combined with very good creep strength, good high-temperature corrosion resistance and good processability, the alloy including (in % by mass) >18 to 26% chromium, 1.5 to 3.0% titanium, 0.6 to 2.0% aluminum, 5.0 to 40% cobalt, 0.005 to 0.10% carbon, 0.0005 to 0.050% nitrogen, 0.0005 to 0.030% phosphorus, max. 0.010% sulfur, max. 0.020% oxygen, max. 0.70% silicon, max. 2.0% manganese, max. 0.05% magnesium, max. 0.05% calcium, max. 0.5% molybdenum, max. 0.5% tungsten, max. 0.2% niobium, max. 0.5% copper, max. 0.5% vanadium, optionally 0 to 20% Fe, optionally 0 to 0.20% Zr, optionally 0.0001 to 0.008% boron, optionally 0-0.20% Y, La, Ce, Ce mixed metal, and/or Hf, and/or 0-0.60% Ta, remainder nickel and the conventional process-related impurities are adjusted in contents of max. 0.002% Pb, max. 0.002% Zn, max. 0.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: December 22, 2020
    Assignee: VDM Metals International GmbH
    Inventor: Heike Hattendorf
  • Patent number: 10851430
    Abstract: A flash ironmaking system and a flash ironmaking method are provided. The flash ironmaking system includes a pulverized coal gasifier; a drying pre-reduction kiln; and a flash furnace having a horizontal bottom in which a molten iron layer region, a slag layer region and a carburizing bed layer region are sequentially formed, a reduction tower, a concentrate nozzle, and a flue.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: December 1, 2020
    Assignee: BEIJING SHANTIE TECHNOLOGY CO., LTD.
    Inventors: Shuhua Deng, Shushan Gong
  • Patent number: 10844452
    Abstract: The disclosure contains, in mass % or mass ppm: C: 0.005% or less, Si: 2.0% to 5.0%, Mn: 0.01% to 0.5%, sol.Al: 10 ppm or less, N: 15 ppm or less, S and Se: each 10 ppm or less, and three or more selected from Sn, Sb, Cr, P, Mo and B whose contents satisfy a relational expression of 0.16?[% Sn]+[% Sb]+[% Cr]+2×[% P]+[% Mo]+[% B]?0.50, the balance being Fe and inevitable impurities, where a number of times of repeated bending in a bend test is 10 or more.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: November 24, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yukihiro Shingaki, Yasuyuki Hayakawa, Masanori Takenaka