Abstract: Disclosed are antibodies thereof that bind to coagulation factor XI (FXI) and/or its activated form factor XIa (FXIa), or to fragments of FXI and/or FXIa, and compositions containing the antibodies. Also disclosed are methods of preparing the antibodies and use of the antibodies for treating and/or preventing coagulation associated conditions such as thrombosis and complications or conditions associated with thrombosis.
Type:
Grant
Filed:
August 9, 2019
Date of Patent:
April 16, 2024
Assignee:
Shanghai Benemae Pharmaceutical
Inventors:
Wenyi Wang, Quan Yu, Xiaowu Liu, John Liuzhong Xu, Zhiqiang Du
Abstract: Disclosed are peptides that specifically bind to neutrophils and uses thereof for neutrophil-targeted delivery of drugs or diagnostic agents in medical conditions including cancer as well as infectious, inflammatory and autoimmune diseases or disorders.
Type:
Grant
Filed:
December 27, 2022
Date of Patent:
April 9, 2024
Assignees:
YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD., HADASIT MEIDCAL RESEARCH SERVICES & DEVELOPMENT LTD.
Abstract: Fusion peptide inhibitors of human coronavirus 229E are provided. The fusion peptide inhibitors of HCoV-229E include peptide #121 (SEQ ID NO: 2: HVLGDISGINASVVQIQKEIDRLNEVAKNLHESLIYLQE), and peptide #125 (SEQ ID NO: 3: HRLRQIRGIRARVVQIQKEIWRLNEVAKLLNESLIYLQE). The fusion peptide inhibitors of HCoV-229E may be administered to a subject in need thereof to inhibit or prevent HCoV-229E cellular entry or infection with HCoV-229E. The fusion peptide inhibitors of HCoV-229E may also be used in HCoV-229E inhibition assays.
Abstract: Provided herein, inter alia, are isolated, humanized antibodies that bind an extracellular domain of a human SIRP-? polypeptide. Also provided are polynucleotides, vectors, host cells, and methods of production and use related thereto.
Type:
Grant
Filed:
February 22, 2022
Date of Patent:
March 26, 2024
Assignee:
ALX Oncology Inc.
Inventors:
Jaume Pons, Bang Janet Sim, Hong Wan, Tracy Chia-Chien Kuo
Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
Type:
Grant
Filed:
December 21, 2021
Date of Patent:
March 26, 2024
Assignee:
Aptevo Research and Development LLC
Inventors:
Gabriela Hernandez-Hoyos, Elaine T. Sewell, Catherine J. McMahan, David Bienvenue, John W. Blankenship, Danielle Mitchell, Peter Pavlik
Abstract: Aqueous pharmaceutical compositions containing a fusion protein of an antibody and a lysosomal enzyme as an active ingredient, which are stable enough to be marketed, are disclosed. The aqueous pharmaceutical composition, for example, comprises the fusion protein of the antibody and the lysosomal enzyme at a concentration of 0.5 to 20 mg/mL, sodium chloride at a concentration of 0.3 to 1.2 mg/mL, sucrose at a concentration of 50 to 100 mg/mL, a nonionic surfactant at a concentration of 0.15 to 3 mg/mL, a buffer at a concentration of 3 to 30 mM, and is adjusted to pH 5.0 to 7.5.
Abstract: The present invention discloses a novel switchable dual chimeric antigen receptor-T (sdCAR-T) cell and a construction method and use thereof, which fall within the field of cellular immunotherapy for tumors. The dual chimeric antigen receptor consists of a first chimeric antigen receptor for MSLN and a second chimeric antigen receptor for FITC. A dual-targeted functional T cells regulated by specific exogenous bifunctional molecules is constructed, and the exogenous molecules are used to preliminarily discuss the in vivo and in vitro activity of the dual chimeric antigen receptor-T cell. By means of in vitro and in vivo tests, it is confirmed that the activation mode of the constructed CAR-T cell is controlled by the combination of endogenous tumor antigens and exogenous bifunctional molecules, and this combined regulation mode can significantly improve the safe application of CAR-T cell immunotherapy.
Abstract: A method of detecting Factor VIII level in a subject, particularly in a subject in need of treatment with at least one Factor Xa inhibitor. The method comprises (a) selecting at least one subject in need of treatment with at least one Factor Xa inhibitor; and (b) detecting Factor VIII level in a sample obtained from the at least one subject with the aim to determine an appropriate dosage of the at least one Factor Xa inhibitor. Preferably, the method comprises a further step of administering at least one Factor Xa inhibitor to the subject.
Abstract: The present disclosure relates to an anti-FcRn antibody or an antigen binding fragment thereof with improved stability and uses thereof. The anti-FcRn antibody or antigen binding fragment thereof binds to FcRn non-competitively with IgG and the like compared to the parent antibody, HL161AN, thereby having improved stability, such as reducing the production rate of aggregates while maintaining the biological activity of significantly reducing the amount of pathogenic autoantibodies in the blood. Therefore, it may be utilized more efficiently for the treatment of an autoimmune disease.
Abstract: Anti-BK virus antibody molecules or binding fragments thereof are disclosed. These Anti-BK virus antibody molecules or binding fragments can be used in the treatment or prevention of BK virus infection and/or BK virus associated disorder.
Type:
Grant
Filed:
October 25, 2022
Date of Patent:
March 5, 2024
Assignees:
MEMO THERAPEUTICS AG, UNIVERSITÄT BERN, UNIVERSITÄT ZÜRICH
Inventors:
Marcel Weber, Simone Schmitt, Christoph Esslinger, Thomas Schachtner, Uyen Huynh-Do, Maurizio Provenzano
Abstract: The present invention relates to the formation of multi-domain specific binding molecules comprising VNARs. Specific binding domains that bind to Tumour Necrosis Factor alpha (TNF?) are also provided.
Type:
Grant
Filed:
September 27, 2018
Date of Patent:
March 5, 2024
Assignee:
ELASMOGEN LTD
Inventors:
Obinna Ubah, Caroline Barelle, Andrew Porter
Abstract: The present invention provides engineered Natural Killer (NK) cells and methods of producing engineered NK cells. The engineered NK cells and compositions containing the engineered NK cells are useful for treating diseases such as cancer.
Abstract: Bispecific antigen binding molecules (e.g., antibodies) that bind blood clotting factors, factor IXa (FIXa) and factor X (FX), and enhance the FIXa-catalysed activation of FX to FXa. Use of the bispecific antigen binding molecules to control bleeding, by replacing natural cofactor FVIIIa which is deficient in patients with haemophilia A.
Type:
Grant
Filed:
June 22, 2018
Date of Patent:
March 5, 2024
Assignee:
KYMAB LIMITED
Inventors:
Wei Wang, E-Chiang Lee, John Kenneth Blackwood, Roberto Magliozzi
Abstract: Methods of preparing and using a highly active blood coagulation factor XI mutant and a gene therapy/editing vector thereof and a recombinant/fusion protein thereof. The nucleotide sequence of the mutant is as shown in SEQ ID NOs: 1-6, and the amino acid sequence is as shown in SEQ ID NO: 7.
Type:
Grant
Filed:
August 30, 2018
Date of Patent:
February 27, 2024
Assignees:
RUIJIN HOSPITAL SHANGHAI JIAOTONG UNIVERSITY SCHOOL OF MEDICINE
Abstract: The invention provides assay methods of detecting plasma protease CI inhibitor (C1-INH) that binds plasma kallikrein, Factor XII, or both, and uses thereof for identifying subjects at risk for or suffering from a pKal-me-diated or bradykinin-mediated disorder. Provided methods permit analysis of patients with plasma kallikrein-mediated angioedema (KMA), or other diseases mediated by pKal useful in the evaluation and treatment.
Abstract: The present invention provides glycated Amadori products of the CD59 peptide and fragments thereof to be used as tools and among methods for the diagnosis and prognosis of pre-diabetes and diabetes. Certain aspects of the invention include glycated Amadori products of CD59 and fragments thereof to be used for the generation of antibodies and antibody fragments. Still other aspects of the invention include methodologies for the preparation of glycated Amadori products of CD59, fragments thereof, the inventive antibodies, and antibody fragments.
Type:
Grant
Filed:
November 1, 2021
Date of Patent:
February 6, 2024
Assignee:
President and Fellows of Harvard College
Abstract: The present invention provides nucleotide sequences encoding polypeptides comprising immunoglobulin variable domains with engineered glycosylation acceptor sites. Specifically, the invention provides immunoglobulin variable domain proteins modified with selected glycans and specific glycan-conjugates thereof. Also provided herein are methods for the production of glycosylated immunoglobulin variable domains and glycan-conjugates thereof.
Type:
Grant
Filed:
May 9, 2018
Date of Patent:
February 6, 2024
Assignees:
VIB VZW, Universiteit Gent
Inventors:
Nico Callewaert, Bram Laukens, Loes Van Schie, Wander Van Breedam, Wim Nerinckx
Abstract: The disclosure provides anti-DENV antibodies having a cross-reactivity to ZIKV and methods of making and using the same. The anti-DENV antibodies have uses that include treating or preventing ZIKV infection.
Type:
Grant
Filed:
March 15, 2019
Date of Patent:
February 6, 2024
Assignees:
Chugai Seiyaku Kabushiki Kaisha, Agency for Science, Technology & Research
Abstract: The present disclosure provides fusion polypeptides comprising serum albumin binding single domain antibody and GDF15, the polypeptide complexes thereof. Pharmaceutical compositions comprising the same and methods of treating diseases are also provided.