Patents Examined by Mursalin B. Hafiz
  • Patent number: 7091620
    Abstract: A semiconductor device includes a semiconductor chip formed with connection terminals, an elastic structure interposed between a main surface of the chip and a wiring substrate formed with wirings connected at first ends thereof to the connection terminals, and bump electrodes connected to the other ends of the wirings. The connection terminals may be at a center part or in peripheral part(s) of the chip main surface and both the elastic structure and wiring substrate are not provided at locations of connection terminals. A resin body seals at least the connection terminals and the exposed first ends of wirings (leads). In a scheme in which the connection terminals are located in a peripheral part of the chip main surface, the wiring substrate protrudes beyond the chip boundary where the connection terminals are arranged, and the resin body shape is restricted by the protruding part of the wiring substrate.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: August 15, 2006
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd., Akita Electronics Systems, Co., Ltd.
    Inventors: Chuichi Miyazaki, Yukiharu Akiyama, Masnori Shibamoto, Tomoaki Kudaishi, Ichiro Anjoh, Kunihiko Nishi, Asao Nishimura, Hideki Tanaka, Ryosuke Kimoto, Kunihiro Tsubosaki, Akio Hasebe, Takehiro Ohnishi, Noriou Shimada, Shuji Eguchi, Hiroshi Koyama, Akira Nagai, Masahiko Ogino
  • Patent number: 7083998
    Abstract: An integrated optoelectronic circuit and process for making is described incorporating a photodetector and a MODFET on a chip. The chip contains a single-crystal semiconductor substrate, a buffer layer of SiGe graded in composition, a relaxed SiGe layer, a quantum well layer, an undoped SiGe spacer layer and a doped SiGe supply layer. The photodetector may be a metal-semiconductor-metal (MSM) or a p-i-n device. The detector may be integrated with an n- or p-type MODFET, or both in a CMOS configuration, and the MODFET can incorporate a Schottky or insulating gate. The invention overcomes the problem of producing Si-manufacturing-compatible monolithic high-speed optoelectronic circuits for 850 nm operation by using epixially-grown Si/SiGe heterostructure layers.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: August 1, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Khalid EzzEldin Ismail, Steven John Koester, Bernd-Ulrich H. Klepser
  • Patent number: 7081676
    Abstract: A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additive, over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: July 25, 2006
    Assignee: International Business Machines Corporation
    Inventors: Paul David Agnello, Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Kirk David Peterson, Robert Joseph Purtell, Ronnen Andrew Roy, Jean Louise Jordan-Sweet, Yun Yu Wang
  • Patent number: 7078786
    Abstract: According to one exemplary embodiment, an integrated circuit chip comprises an oxide region. The integrated circuit chip further comprises a poly resistor having a first terminal and second terminal, where the poly resistor is situated over the oxide region. According to this exemplary embodiment, the integrated circuit chip further comprises a metal resistor having a first terminal and a second terminal, where the metal resistor is situated over the poly resistor, and where the first terminal of the metal resistor is connected to the first terminal of the poly resistor. According to this exemplary embodiment, the integrated circuit chip may further comprise a first metal segment connected to the second terminal of the metal resistor and a second metal segment connected to the second terminal of the poly resistor. The integrated circuit chip may further comprise an inter-layer dielectric situated between the poly resistor and the metal resistor.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: July 18, 2006
    Assignee: Newport Fab, LLC dba Jazz Semiconductor
    Inventors: Marco Racanelli, Chun Hu, Chih-Chieh Shen
  • Patent number: 7071033
    Abstract: A semiconductor device including a leadframe and two stacked dies, a first of which is on a top surface of a leadframe while the second one is on a bottom surface of the leadframe. The drain region of the first die is coupled to a drain clip assembly that includes a drain clip that is in contact with a lead rail. The body of the semiconductor device includes a window or opening that exposes the drain region of the second die.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: July 4, 2006
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Maria Cristina B. Estacio
  • Patent number: 7064395
    Abstract: The semiconductor device comprises a gate interconnection 24a including a gate electrode formed over a semiconductor substrate 14 with a gate insulation film 22 formed therebetween; a first source/drain diffused layer 28 formed near the end of the gate interconnection 24a; a second source/drain diffused layer 34 formed remote from the gate interconnection 24a and the first source/drain diffused layer 28; and an insulation film 40 formed over the gate interconnection 24a, the first source/drain diffused layer 28 and the second source/drain diffused layer 34, and having a groove-shaped opening 42a formed in, which integrally exposes the gate interconnection 24a, one of the first source/drain diffused layer 28, and one of the second source/drain diffused layer 34; and a contact layer 48a buried in the groove-shaped opening 42a. The groove-shaped openings 42a for the contact layers 48a to be buried in can be formed without failure.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: June 20, 2006
    Assignee: Fujitsu Limited
    Inventors: Takayoshi Minami, Yuji Setta
  • Patent number: 7027322
    Abstract: There is provided an EPIR device which is excellent in mass productivity and high in practical utility. The EPIR device includes a lower electrode layer, a CMR thin film layer and an upper electrode layer which are laminated in this order on any of various substrates. A Pt polycrystal thin film 10 forming the lower electrode layer includes columnar Pt crystal grains 10A, 10B, 10C, . . . and over 90% of these crystal grains is oriented to a (1 1 1) face. Columnar PCMO crystal grain groups 20A, 20B, 20C, . . . are respectively locally grown epitaxially on the respective outermost surfaces of the Pt crystal grains 10A, 10B, 10C, . . . . Then, the crystal faces of the crystal grains included in the PCMO crystal grain groups 20A, 20B, 20C, . . . and vertical in the substrate surface normal direction are any one of (1 0 0)p, (1 1 0)p and (1 1 1)p planes.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: April 11, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshimasa Suzuki, Yuji Nishi, Masayuki Fujimoto, Nobuyoshi Awaya, Kohji Inoue, Keizo Sakiyama
  • Patent number: 7015076
    Abstract: A method is provided of forming an integrated circuit with a semiconductor substrate that is doped with a set concentration of an oxidizable dopant of a type that segregates to the top surface of a silicide when the semiconductor substrate is reacted to form such a silicide. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. Source/drain junctions are formed in the semiconductor substrate. A silicide is formed on the source/drain junctions and dopant is segregated to the top surface of the silicide. The dopant on the top surface of the segregated dopant is oxidized to form an insulating layer of oxidized dopant above the silicide. An interlayer dielectric is deposited above the semiconductor substrate. Contacts and connection points are then formed in the interlayer dielectric to the insulating layer of oxidized dopant above the silicide.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: March 21, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Darin A. Chan, Simon Siu-Sing Chan, Paul L. King