Patents Examined by N C Yang
  • Patent number: 8288171
    Abstract: Provided is a biochip and an apparatus for detecting a biomaterial. The biochip includes a metal thin film on the surface of a substrate, restraining autofluorescence of the substrate, and a spacer on the metal thin film, having capture molecules immobilized on the surface of the spacer and specifically bound to target molecules. The spacer has a thickness controlled to enhance the strength of a fluorescence signal emitted from a fluorophore labeled with the target molecules and immobilized on the spacer by the specific binding between the capture molecule and the target molecule.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: October 16, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Woo Song, Yo Han Choi, Hyeon-Bong Pyo
  • Patent number: 8280134
    Abstract: A method including: providing a sample with M components to be labeled, where M>2; labeling the components with N stains, where N<M so that at least two components are labeled with a common stain; obtaining a set of spectral images of the sample; classifying different parts of the sample into respective classes that distinguish the commonly stained components based on the set of spectral images; and determining relative amounts of multiple ones of the M components in different regions of the sample. Related apparatus are also disclosed.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: October 2, 2012
    Assignee: Cambridge Research & Instrumentation, Inc.
    Inventor: Clifford C. Hoyt
  • Patent number: 8257967
    Abstract: A system for the rapid characterization of multi-cardiovascular risk factor analyte fluids, in one embodiment, includes a light source, a sensor array, and a detector. The sensor array is formed from a supporting member, in which a plurality of cavities may be formed. A series of chemically sensitive particles, in one embodiment, are positioned within the cavities. The particles may produce a signal when a receptor, coupled to the particle, interacts with the cardiovascular risk factor analyte and the particle-analyte complex is visualized using a visualization reagent. Using pattern recognition techniques, the analytes within a multi-analyte fluid may be characterized. In an embodiment, each cavity of the plurality of cavities is designed to capture and contain a specific size particle. Flexible projections may be positioned over each of the cavities to provide retention of the particles in the cavities.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: September 4, 2012
    Assignee: Board of Regents, The University of Texas System
    Inventors: John T. McDevitt, Eric V. Anslyn, Jason B. Shear, Dean P. Neikirk, Nick J. Christodoulides
  • Patent number: 8247220
    Abstract: A clinical testing assay device that can differentiate bacterial from viral infections is described. The assay device has a sample contact zone with an absorbent pad on which a test sample is deposited and a detection zone with a colorant indicator that is sensitive to bacteria cells. The colorant indicator changes color when exposed to a bacteria sample. The color change signal can manifest relatively quickly, usually within a few minutes, and with an intensity correlative to the concentration of bacteria in a test sample. A method of use is also provided.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 21, 2012
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Stephanie M. Martin, John G. MacDonald, Erica M. Phillips
  • Patent number: 8241883
    Abstract: The present invention provides novel microfluidic devices and methods for performing pulsed field mobility shift assays in microfluidic devices. In particular the devices and methods of the invention utilize differences between electrophoretic mobilities (e.g., as between reactants and products, especially in non-fluorogenic reactions) in order to separate the species and thus analyze the reaction.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: August 14, 2012
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Andrea W. Chow, John C. Owicki, J. Wallace Parce
  • Patent number: 8227204
    Abstract: A method, composition and system respond to ionizing radiation to adjust biological activity. In some approaches the ionizing radiation is X-ray or extreme ultraviolet radiation that produces luminescent responses that induce biologically active responses.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: July 24, 2012
    Inventors: Edward S. Boyden, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Clarence T. Tegreene, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 8222049
    Abstract: Microfluidic systems and methods including those that provide control of fluid flow are provided. Such systems and methods can be used, for example, to control pressure-driven flow based on the influence of channel geometry and the viscosity of one or more fluids inside the system. One method includes flowing a plug of a low viscosity fluid and a plug of a high viscosity fluid in a channel including a flow constriction region and a non-constriction region. In one embodiment, the low viscosity fluid flows at a first flow rate in the channel and the flow rate is not substantially affected by the flow constriction region. When the high viscosity fluid flows from the non-constriction region to the flow constriction region, the flow rates of the fluids decrease substantially, since the flow rates, in some systems, are influenced by the highest viscosity fluid flowing in the smallest cross-sectional area of the system (e.g., the flow constriction region).
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: July 17, 2012
    Assignee: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller
  • Patent number: 8221299
    Abstract: Membrane-encased structures such as biological cells, liposomes, and vesicles, are conveyed through one or more channels in a rotating disk for individual exposure to optical elements or to electrodes, for purposes of transfection or flow cytometry. The rotation of the disk serves either to provide centrifugal force to urge the cells against one wall of the channel and in certain embodiments to move the cells through the channels, or to draw cells at preselected times or intervals into the exposure zone, or all three.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: July 17, 2012
    Assignee: Bio-Rad Laboratories, Inc.
    Inventor: Charles W. Ragsdale
  • Patent number: 8216855
    Abstract: The invention provides a method of processing a biological and/or chemical sample. The method includes providing a fluid droplet, which includes an inner phase and an outer phase. The outer phase is immiscible with the inner phase, and the outer phase is surrounding the inner phase. The inner phase includes the biological and/or chemical sample. The fluid droplet furthermore comprises magnetically attractable matter. The method also includes providing at least one surface, which is of such a texture and such a wettability for the fluid of the inner phase of the fluid droplet, that the fluid droplet remains intact upon being contacted therewith. The method further includes disposing the fluid droplet onto the at least one surface. The method also includes performing a process on the biological and/or chemical sample in the fluid droplet.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: July 10, 2012
    Assignee: Agency for Science, Technology And Research
    Inventors: Juergen Pipper, Tseng-Ming Hsieh, Pavel Neuzil
  • Patent number: 8216826
    Abstract: A fluid analyzing apparatus. The fluid analyzing apparatus sequentially or simultaneously detects and analyzes a multiplex fluid sample with suitable analyzing elements. Meanwhile, the fluid analyzing apparatus may be disassembled to a first unit, a second unit and a third unit, such that the analyzing elements therein are easily disposed and replaced. The fluid analyzing apparatus analyzes and detects the multiplex fluid sample by allowing the multiplex fluid sample to sequentially or simultaneously flow through a plurality of target chambers. The fluid analyzing apparatus sequentially or simultaneously transports the multiplex fluid sample to the target chambers, thereby enhancing the speed and analysis thereof.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: July 10, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Kun Feng Lee, Pei-Shin Jiang, Yuh-Jiuan Lin
  • Patent number: 8216797
    Abstract: The invention described herein provides methods for the detection of target particles, such as pathogens, soluble antigens, nucleic acids, toxins, chemicals, plant pathogens, blood borne pathogens, bacteria, viruses and the like. Also described is an emittor cell comprising a receptor, wherein the receptor can be an antibody or an Fc receptor, and an emittor molecule for the detection of a target particle in a sample wherein the target particle to be detected is bound by one or more receptors on the emittor cell. Also provided are optoelectronic sensor devices for detecting a target particle in a sample, including in a plurality of samples.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: July 10, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Eric Schwoebel, James Harper, Martha S. Petrovick, Frances Nargi, Mark Hollis, Bernadette Johnson, Joseph Lacirignola, Richard Mathews, Kristine Hogan, Trina Vian, Allan Heff, Mark Hennessy, Songeeta Palchaudhuri, Todd Rider
  • Patent number: 8211714
    Abstract: The invention involves obtaining signatures of species (including chemical, biological, or biochemical molecules) and/or signatures of interactions between species and using them to characterize species, characterize interactions, and/or identify species that could be useful in a variety of settings. Signatures can be obtained using aqueous multi-phase partitioning and can be used to predict molecular interactions for applications such as drug discovery. A plurality of aqueous multi-phase partitioning arrangements can define an overall system providing an information-intensive signature, maximizing precision and sensitivity.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 3, 2012
    Assignee: Analiza, Inc.
    Inventors: Arnon Chait, Boris Y. Zaslavsky
  • Patent number: 8192966
    Abstract: A novel label-free sensitive detection method by employing a novel sensitive charge sensor is provided. Dissociation constant information is provided by a simple measurement of the dissociation of the target molecule form the target's receptor. The later process is affected by a novel system and its configuration as described herein. Basic objectives are to provide a drug discovery and characterization system that is an improvement over the current state of the art, low cost, highly sensitive, accurate, fast and easy to use. This invention involves both a physical system and a methodology.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: June 5, 2012
    Assignee: University of Hawaii
    Inventor: James W. Holm-Kennedy
  • Patent number: 8187829
    Abstract: The present invention relates to a method for fabricating a pattern on a biosensor substrate and a biosensor using the same. The present invention provides a method of fabricating a pattern on a substrate of a biosensor in which an amine group is formed on a substrate by using polyethylenimine (PEI), and a site to which a biosubstance is immobilized is masked and irradiated with ultraviolet rays, such that a pattern having a desired shape can be formed on the substrate and a biosensor in which the biosubstance is immobilized on the pattern acquired by using the above-mentioned method.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: May 29, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyobong Hong, Hyungjoong Yoon, Myungae Chung
  • Patent number: 8173441
    Abstract: The present invention relates to a method for screening compounds to identify compounds that bind to a specific target, comprising the steps of: (a) providing a target immobilized to a solid support; (b) generating a first NMR spectrum of the said compounds to be screened in the presence of the solid support without the target molecule immobilized thereto; (c) generating a second NMR spectrum of the said compounds to be screened in the presence of the solid support with the target molecule immobilized thereto; and (d) comparing said first and second NMR spectrum to determine differences between said first and second NMR spectrum. Further the invention relates to an NMR apparatus having arranged therein a particular NMR probe.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: May 8, 2012
    Assignee: Universiteit Leiden
    Inventor: Gregg David Siegal
  • Patent number: 8163492
    Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: April 24, 2012
    Assignee: Fluidign Corporation
    Inventors: Marc Unger, Ian D. Manger, Michael Lucero, Yong Yi, Emily Miyashita-Lin, Anja Wienecke, Geoffrey Facer
  • Patent number: 8158430
    Abstract: The present invention provides fluidic devices and systems that allow detection of analytes from a biological fluid. The methods and devices are particularly useful for providing point-of-care testing for a variety of medical applications.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: April 17, 2012
    Assignee: Theranos, Inc.
    Inventors: Shaunak Roy, Malissa Takahashi, Ian Gibbons, Edmond Ku, Thanh Dang, Tammy Burd, Adam Vollmer, Elizabeth A. Holmes
  • Patent number: 8158363
    Abstract: An optical fiber for use in an immunoassay device having at least one microfluidic channel, the optical fiber being for transmitting excitation light to the microfluidic channel and for transmitting emitted fluorescence to a light detector.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: April 17, 2012
    Assignee: Nanyang Technological University
    Inventors: Swee Chuan Tjin, Rudi Irawan
  • Patent number: 8137759
    Abstract: The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: March 20, 2012
    Assignee: The Regents of the University of California
    Inventors: Jin Z. Zhang, Adam Schwartzberg, Tammy Y. Olson
  • Patent number: 8137988
    Abstract: This invention describes a method of using controlled fluidic forces to improve the performance of a biochemical binding assay where a target molecule is captured by specific molecular recognition onto a substrate surface with an affinity coating, and then labeled with a detectable micrometer-scale particle using a second specific molecular recognition reaction with the target. By using specific ranges of label sizes and laminar flow conditions, controlled fluidic forces can be applied to the label particles in order to selectively remove molecules bound to a surface according to their binding strength, and thereby increase the ratio of specifically bound labels to more weakly attached non-specifically bound labels. This method can be used with a wide variety of label types and associated detection methods, improving the sensitivity and selectivity of a broad range of binding assays.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: March 20, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jack C Rife, Lloyd J Whitman