Patents Examined by Natasha Young
  • Patent number: 8974743
    Abstract: The invention relates to a device for continuously carrying out chemical reactions. The device comprises a microwave generator, a microwave applicator accommodating a microwave-transparent tube, and an isothermal reaction section which is arranged such that the material to be reacted is guided inside the microwave-transparent tube through a microwave applicator which is used as the heating zone and in which it is heated to reaction temperature by means of microwaves that are emitted from the microwave generator into the microwave applicator. The material to be reacted, which is heated and optionally under pressure, is transferred from the microwave applicator to an isothermal reaction zone once it has left the heating zone, said reaction zone being arranged downstream of the heating zone, and is cooled once it has left the isothermal reaction zone.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: March 10, 2015
    Assignee: Clariant Finance (BVI) Limited
    Inventors: Matthias Krull, Roman Morschhaeuser
  • Patent number: 8968686
    Abstract: Disclosed are process and apparatus for vertical splitting of the oxygen supply to a post-oxidation reactor. Further disclosed are process and apparatus for supplying reaction medium to a post-oxidation reactor at a mid-level inlet. Such apparatus and process can assist in reducing oxygen pinch throughout the post-oxidation reactor.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: March 3, 2015
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Ashfaq Shaikh, Alan George Wonders
  • Patent number: 8968685
    Abstract: A fuel processing system for converting a logistical fuel and air into a liquid product comprising methanol. One such system comprises a fuel injection system configured to combine a logistical fuel and ambient air to produce a logistical fuel and air mixture, a synthesis gas production system configured to convert the logistical fuel and air mixture to synthesis gas, and a methanol synthesis system configured to convert the synthesis gas to a crude methanol liquid. Related methods are additionally disclosed.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: March 3, 2015
    Assignee: Alliant TechSystems Inc.
    Inventors: Sabrina Hawkins, Jason S. Tyll, Florin Girlea
  • Patent number: 8961891
    Abstract: A heat sink is used to absorb heat produced by a vehicle. The heat sink uses an endothermic catalytic alcohol dehydrogenation reaction to assist with the absorption of excess heat produced in the electronics of the vehicle. In some embodiments, the alcohol can be pre-heated by absorbing heat from various components of the vehicle. Excess heat from the various components or from the vehicle engine can be used to vaporize the reaction fluids in order to further absorb additional heat. Reaction fluids can also be sent to the vehicle's engine/burner for use as a supplemental fuel.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: February 24, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Ashish B. Mhadeshwar, Daniel Norton, Robert James Perry, Paul Glaser, Patrick Edward Pastecki
  • Patent number: 8961892
    Abstract: Devices for selective hydrogenation of azide and peroxide compounds include at least one porous element, for example a solid metallic structure positioned within a reaction tube of a tubular housing. The porous element includes a framework of interconnected elements establishing a plurality of shells respectively defining a plurality of hollow spaces of predetermined geometrical configuration. Each of the shells includes holes that fluid-connect adjacent ones of the spaces to thereby allow a cross-flow of the azide or peroxide compounds through the porous element.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: February 24, 2015
    Assignee: DSM IP Assets B.V.
    Inventors: Cédric Hutter, Francesco Mascarello, Philipp Von Rohr Rudolf, David Ruppen
  • Patent number: 8951476
    Abstract: Multiple catalytic processing stations couple with a system which produces volatile gas streams from biomass decomposition at discrete increasing temperatures. These catalytic processing stations can be programmed to maximize conversion of biomass to useful renewable fuel components based on input feedstock and desired outputs.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: February 10, 2015
    Assignee: Cool Planet Energy Systems, Inc.
    Inventors: Michael C. Cheiky, Rajashekharam Malyala
  • Patent number: 8940254
    Abstract: An apparatus is disclosed for recovering hydroprocessing effluent from a hydroprocessing unit utilizing a hot stripper and a cold stripper. Only the hot hydroprocessing effluent is heated in a fired heater prior to product fractionation, resulting in substantial operating and capital savings.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, David M. Bowman, Xin X. Zhu
  • Patent number: 8940543
    Abstract: Disclosed are methods and apparatus for treating and analyzing a gas stream to determine the effectiveness of urea gasification. The apparatus will be capable of performing the method and will include: means for introducing an aqueous solution of urea into a reactor having hot gases therein and subjecting the aqueous to temperatures for a time to assure the gasification of the aqueous urea and form a thermal gasification product stream containing NH3 and HNCO; means for taking a sample stream from the gasification product stream; means for contacting the sample stream with a hydrolysis catalyst in the presence of sufficient water to convert HNCO to NH3 and form an ammonia sample stream; and means for analyzing the ammonia sample stream for NH3. The methods and apparatus can also be used to control a urea gasification process and/or to signal anomalous operation.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: January 27, 2015
    Assignee: Fuel Tech, Inc.
    Inventors: William H. Sun, John M. Boyle
  • Patent number: 8940255
    Abstract: Disclosed are process and apparatus for vertical splitting of the oxygen supply to a post-oxidation reactor. Further disclosed are process and apparatus for supplying reaction medium to a post-oxidation reactor at a mid-level inlet. Such apparatus and process can assist in reducing oxygen pinch throughout the post-oxidation reactor.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: January 27, 2015
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Ashfaq Shaikh, Alan George Wonders
  • Patent number: 8936756
    Abstract: The apparatus herein provide a catalyst cooler with a vent that communicates fluidizing gas to a lower chamber of a regenerator. Air that is used as fluidizing gas can then be consumed in the regenerator without promoting after burn in the upper chamber.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Daniel N. Myers
  • Patent number: 8936767
    Abstract: Disclosed are process and apparatus for vertical splitting of the oxygen supply to a post-oxidation reactor. Further disclosed are process and apparatus for supplying reaction medium to a post-oxidation reactor at a mid-level inlet. Such apparatus and process can assist in reducing oxygen pinch throughout the post-oxidation reactor.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: January 20, 2015
    Assignee: Grupo Petrotemex. S.A. DE C.V.
    Inventors: Ashfaq Shaikh, Alan George Wonders, David Lange
  • Patent number: 8932534
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, said apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of no less than 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar and oxygen partial pressure of 10?10 bar, at a temperature of 1200° C.; wherein said refractory material has no less than 4 vol % formed porosity, measured at 20° C., based upon the bulk volume of said refractory material. In another embodiment, the refractory material has total porosity in the range of from 4 to 60 vol %.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: January 13, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: ChangMin Chun, Frank Hershkowitz, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
  • Patent number: 8926908
    Abstract: Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods. A representative reactor system includes a first reaction zone and a heat path, a reactant source coupled to the first reaction zone, and a first actuator coupled to cyclically pressurize the first reaction zone. A second reaction zone is in fluid communication with the first, a valve is coupled between the first and second reaction zones to control a flow rate therebetween, and a second actuator is coupled in fluid communication with the second reaction zone to cyclically pressurize the second reaction zone. First and second heat exchangers direct heat from products to reactants in the reaction zones. A controller controls the first and second actuators in a coordinated manner based at least in part on a flow rate of the second product from the second reaction zone.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: January 6, 2015
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8926919
    Abstract: After absorbing oxygen together with carbon dioxide in an absorber 103, absorbing liquid 104a is supplied to oxygen collecting units 13 and 14. The oxygen collecting units 13 and 14 include silver to collect the oxygen in the absorbing liquid 104a and eliminate the oxygen from the absorbing liquid 104a. A regenerating unit 15 separates and recovers the oxygen collected in one of the two oxygen collecting units 13 and 14 to regenerate the oxygen collecting unit when the other oxygen collecting unit is supplied with the absorbing liquid 104a. A continuous operation can be achieved by switching and using the two oxygen collecting units 13 and 14.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: January 6, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Ogawa, Manabu Sakurai, Yukio Ohashi, Hideo Kitamura
  • Patent number: 8926909
    Abstract: A method for modernizing an ammonia synthesis loop (1) with a first converter (10) and a second converter (11) in series, the first converter (10) comprises a cartridge with one or more catalyst beds, the second converter (11) comprises a catalyst bed in direct contact with said vessel, the method comprising the steps of removing the second converter, and boosting the first converter by replacing the cartridge with a high-efficiency cartridge comprising a plurality of adiabatic catalyst beds and inter-bed heat exchangers, or an isothermal catalyst bed, and by reducing the concentration of inerts in said first converter.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: January 6, 2015
    Assignee: Casale SA
    Inventors: Ermanno Filippi, Luca Bianchi
  • Patent number: 8926917
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 6, 2015
    Assignee: Ener-Core Power, Inc.
    Inventor: Boris A. Maslov
  • Patent number: 8920736
    Abstract: A loop seal for a fluidized bed reactor comprising a vertical downcomer segment connected to a dipleg for receiving solids particles from the dipleg, a horizontal segment downstream of the downcomer, a riser segment downstream of the horizontal segment, and a downwardly inclined segment downstream of the riser, whereby the solids are entrained to the fluidized bed reactor. An eductor is added to the angled leg to induce the underflow gas from the cyclone; one of the preferred motive fluids to the eductor is the fines from fuel preparation and the carrying gas for the fines. Also provided are a fluidized bed reactor comprising the loop seal, and a method for producing syngas from coal and steam using the same.
    Type: Grant
    Filed: June 5, 2010
    Date of Patent: December 30, 2014
    Assignee: Synthesis Energy Systems, Inc.
    Inventor: Guohai Liu
  • Patent number: 8916105
    Abstract: Provided is a multi-stack cure system. The system includes a chamber having an inlet port and an outlet port. A magazine is mounted in the chamber. A plurality of substrates having encapsulants are loaded in the magazine. A heater is mounted at the chamber and serves to heat the plurality of substrates having the encapsulants. A loading unit is positioned adjacent the inlet port. The loading unit has a transfer device and a push bar. A substrate recognition device is mounted in the loading unit. A control device is connected to the substrate recognition device. The inlet port has a size larger than each of the plurality of substrates having the encapsulants and smaller than the magazine.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: December 23, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jung-Gyu Park
  • Patent number: 8894939
    Abstract: A reactor for carrying out a chemical reaction in a three phase slurry system providing a horizontal reaction vessel with a cross sectional area which is dependent on the vessel length, vessel diameter, and axial position. The vessel has a gas inlet at or near the bottom of the reaction vessel and a gas distributor. The gas product exits the vessel by conduit means at or near the top of the reaction vessel. The vessel includes a plurality of horizontal cooling coils to provide a cooling medium to the slurry. In the reaction vessel, the synthesis gas has an average linear velocity which is a function of the vessel cross sectional area.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: November 25, 2014
    Assignee: Emerging Fuels Technology, Inc.
    Inventors: Rafael Espinoza, Kenneth L. Agee
  • Patent number: 8894944
    Abstract: The present invention provides a membrane, comprising in this order a first catalyst layer, an electronically and ionically conducting layer having a nanosized microstructure, and a second catalyst layer, characterized in that the electronically and ionically conducting layer is formed from an electrolyte material, a grain growth inhibitor and/or grain boundary modifier, and a method for producing same.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: November 25, 2014
    Assignee: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Søren Linderoth