Patents Examined by Nathan A. Bowers
  • Patent number: 11338295
    Abstract: A system for thermocycling biological samples within detection chambers comprising: a set of heater-sensor dies, each heater-sensor die comprising a heating surface configured to interface with a detection chamber and a second surface, inferior to the heating surface, including a first connection point; an electronics substrate, comprising a first substrate surface coupled to the second surface of each heater-sensor die, an aperture providing access through the electronics substrate to at least one heater-sensor die, and a second substrate surface inferior to the first substrate surface, wherein the electronics substrate comprises a set of substrate connection points at least at one of the first substrate surface, an aperture surface defined within the aperture, and the second substrate surface, and wherein the electronics substrate is configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of wire bonds, including a wire bond coupled between the
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: May 24, 2022
    Assignee: NeuMoDx Molecular, Inc.
    Inventors: Sundaresh Brahmasandra, Thomas Haddock, Patrick Duffy, Jeffrey Williams
  • Patent number: 11318456
    Abstract: An aseptic sampling apparatus includes an isolator, a liquid delivery port that is disposed in the isolator, a sampling section that is disposed inside the isolator, a first flow path that communicates with a discharge flow path of the sampling section, and that connects an inside and outside of the isolator to each other through the liquid delivery port, a fluid supplying unit that supplies a fluid to the sampling section, a gas supplying unit that communicates with the fluid supplying unit, and a seal member that prevents the fluid supplied from fluid supplying unit to the discharge flow path from leaking.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: May 3, 2022
    Assignees: NIHON KOHDEN CORPORATION, OSAKA UNIVERSITY
    Inventors: Hodaka Makino, Hirotsugu Kubo, Tetsuya Ogawa, Masahiro Kinooka
  • Patent number: 11313851
    Abstract: A device for measuring a tension of a cell structure containing muscle cells includes a first and a second gel adaptor holder. The first gel adaptor holder includes a frame member and a first gel holding portion which is disposed protrudingly from a part of an inner surface of the frame member for fixing one end of a gel. The second gel adaptor holder includes a second gel holding portion that fixes another end of the gel, and connecting members connected with the second gel holding portion. A kit including the device, a substrate and a gel forming cover. The substrate includes a pair of gel shaping convex parts fitted along the inner surface of the frame member. The gel forming cover includes a surface parallel to a gel contacting surface of the substrate, in order to form an upper surface of the gel.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: April 26, 2022
    Assignee: NIHON KOHDEN CORPORATION
    Inventors: Hirotsugu Kubo, Takahiro Shioyama, Yuki Kagawa, Yuto Hinata, Hodaka Makino
  • Patent number: 11299701
    Abstract: Provided is a culture-medium-monitoring apparatus including: an optical measurement unit that includes an illumination light source and a collecting lens that radiate an illumination light onto a culturing liquid, a retroreflective member that has an array in which micro-reflective elements are arrayed, that is disposed so as to sandwich the vessel between the retroreflective member, and the illuminating light source and the collecting lens, and that reflects the illumination light passed through the culturing liquid in the vessel, and a light detector that detects an intensity of the illumination light passed through the culturing liquid in the vessel after being reflected by the retroreflective member; and a control portion that causes the intensity of the illumination light to be repeatedly detected at a prescribed timing, and that determines a state of the culturing liquid on the basis of a change over time in the intensity of the illumination light.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: April 12, 2022
    Assignee: OLYMPUS CORPORATION
    Inventor: Hiroshi Sasaki
  • Patent number: 11299705
    Abstract: A system and method for growing and maintaining biological material including producing a protein associated with the tissue, selecting cells associated with the tissue, expanding the cells, creating at least one tissue bio-ink including the expanded cells, printing the at least one tissue bio-ink in at least one tissue growth medium mixture, growing the tissue from the printed at least one tissue bio-ink, and maintaining viability of the tissue.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: April 12, 2022
    Assignee: DEKA Products Limited Partnership
    Inventors: Christopher C. Langenfeld, David D. B. Cannan, Dirk A. van der Merwe, Dean Kamen, Jason A. Demers, Frederick Morgan, Timothy D. Moreau, Brian D. Tracey, Matthew Ware, Richard J. Lanigan, Michael A. Baker, David Blumberg, Jr., Richard E. Gautney, Derek G. Kane, Dane Fawkes, Thomas J. Bollenbach, Michael C. Tilley, Stuart A. Jacobson, John F. Mannisto
  • Patent number: 11299704
    Abstract: The present invention relates to a system comprising a mixing device for mixing the content of a bioreactor. The system is comprising at least one movement device for initiating a mixing movement in the bioreactor or in a holder for receiving a bioreactor and at least one sensor that can be arranged in or on the bioreactor for receiving at least one physiological or physical measurement variable. The mixing device or the bioreactor further comprises a sensor or transmitter for generating a synchronization measurement variable.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: April 12, 2022
    Assignee: SARTORIUS STEDIM BIOTECH GMBH
    Inventors: Simon Brütsch, Jochen Scholz
  • Patent number: 11293057
    Abstract: The invention provides an alternating current electrospray technology that can generate micron sized droplets in oil at very high throughput for emulsion or digital PCR (Polymerase Chain Reaction). This technology outperforms the throughput of the current gold standard in droplet generation using flow-focusing technology by at least a factor of 100. The design is simple and can generate a billion to a trillion monodispersed droplets in about one hour. This is much faster than flow-focusing which is limited to a few million droplets per hour. The droplet size and generation rate can also be easily adjusted by changing the voltage of the AC electric field. The range of produced droplet sizes is about 1-100 microns, wherein the droplets are monodispersed in size.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: April 5, 2022
    Assignee: University of Notre Dame du Lac
    Inventors: Hsueh-Chia Chang, David B. Go, Zdenek Slouka, Satyajyoti Senapati, Yongfan Men, Zehao Pan
  • Patent number: 11293021
    Abstract: In an illustrative embodiment, automated multi-module cell editing instruments are provided to automate multiple edits into nucleic acid sequences inside one or more cells.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: April 5, 2022
    Assignee: Inscripta, Inc.
    Inventors: Jorge Bernate, Kevin Ness, Phillip Belgrader, Don Masquelier, Ryan Gill
  • Patent number: 11287358
    Abstract: Devices that include a liquid chamber including at least two ports, wherein the opening of a first port is larger than the opening of a second port, an air chamber including at least one port, and a membrane located between the liquid chamber and the air chamber, and a pressure sensor coupled to the port in the air chamber are provided. Systems including the disclosed devices are also provided. The systems include liquid in the liquid chamber of the device. Methods of using the devices and systems include measuring one or more properties of a liquid by flowing the liquid through the liquid chamber of the system and measuring the pressure produced due to the difference in size of the ports in the liquid chamber.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: March 29, 2022
    Assignee: Triad National Security, LLC
    Inventors: Pulak Nath, Jackson Henry McFall, Dylan Chance Purcell, Jen-Huang Huang
  • Patent number: 11286451
    Abstract: The invention provides a device and a method for the assembly of an aggregation of adherent cells, particularly a three-dimensional assembly of adherent cells.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: March 29, 2022
    Assignee: Brown University
    Inventors: Jeffrey R. Morgan, Kali L. Manning, Blanche Ip
  • Patent number: 11273448
    Abstract: A system and method of manufacture for the system, comprising a set of heater-sensor dies, each heater-sensor die comprising an assembly including a first insulating layer, a heating region comprising an adhesion material layer coupled to the first insulating layer and a noble material layer, and a second insulating layer coupled to the heating region and to the first insulating layer through a pattern of voids in the heating region, wherein the pattern of voids in heating region defines a coarse pattern associated with a heating element of the heating region and a fine pattern, integrated into the coarse pattern and associated with a sensing element of the heating region; an electronics substrate configured to couple heating elements and sensing elements of the set of heater-sensor dies to a controller; and a set of elastic elements configured to bias each of the set of heater-sensor dies against a detection chamber.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 15, 2022
    Assignee: NEUMODX MOLECULAR. INC.
    Inventors: Sundaresh Brahmasandra, Thomas Haddock, Patrick Duffy, Jeffrey Williams
  • Patent number: 11273447
    Abstract: Multi-well collapsible basket arrays and methods for their use with high throughput culture and histology analysis of spheroids and organoids. Such a collapsible basket array includes a collapsible cellular array structure having multiple cells and connectors that interconnect adjacent pairs of the cells to cause the collapsible cellular array structure to collapse from an expanded configuration to a collapsed configuration in which the connectors are partially wrapped around perimeters or circumferences of the cells, whereby the collapsible cellular array structure is expandable to acquire an expanded configuration capable of individually aligning the cells thereof with wells of a well plate. The collapsible basket array further includes inserts individually mountable to the cells of the collapsible cellular array structure, with each insert including a permeable basket with pores sized to retain spheroids or organoids within the basket.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: March 15, 2022
    Assignee: Purdue Research Foundation
    Inventors: Bumsoo Han, George Tsu-Chih Chiu, Thomas Heinrich Siegmund, Michael Linnes, Yumeng Wu, Matthew Tyler Short
  • Patent number: 11274273
    Abstract: A multilayered cell culture apparatus for the culturing of cells is disclosed. The cell culture apparatus is defined as an integral structure having a plurality of cell culture chambers in combination with tracheal space(s). The body of the apparatus has imparted therein gas permeable membranes in combination with tracheal spaces that will allow the free flow of gases between the cell culture chambers and the external environment. The flask body also includes an aperture that will allow access to the cell growth chambers by means of a needle or cannula. The size of the apparatus, and location of an optional neck and cap section, allows for its manipulation by standard automated assay equipment, further making the apparatus ideal for high throughput applications.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: March 15, 2022
    Assignee: Corning Incorporated
    Inventors: Gregory Roger Martin, Allison Jean Tanner
  • Patent number: 11268057
    Abstract: Apparatus for treatment of wet organic matter to produce biogas, comprising a closed reactor (11) for anaerobic digestion of the wet organic matter. The anaerobic reactor comprises two vertical 5 tubes, a vertically arranged outer tube (14) defining a first reactor chamber (111) enveloping a vertically arranged inner tube (15) which is divided into a first region (112a) and a second region (112b) of a second reactor chamber (112) by a vertical partitioning wall (16). The first reactor chamber comprises a particle retaining unit (31) connecting the first and the second reactor chambers. The anaerobic reactor (11) exhibits a top discharge pipe (18) for gas developed in either 0 of the two reactor chambers (111, 112). A method for treatment of wet organic matter is also contemplated.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: March 8, 2022
    Assignees: UNIVERSITETET I SØRØST-NORGE, WATERMENT AS, YARA INTERNATIONAL ASA
    Inventors: Rune Bakke, Dag Normann Øvrebø
  • Patent number: 11268061
    Abstract: The present disclosure provides automated modules and instruments for improved detection of nuclease genome editing of live cells. The disclosure provides improved modules—including high throughput modules—for screening cells that have been subjected to editing and identifying and selecting cells that have been properly edited.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: March 8, 2022
    Assignee: Inscripta, Inc.
    Inventors: Andrew Garst, Michael Graige, Richard Fox, Eileen Spindler, Amy Hiddessen, Phillip Belgrader, Don Masquelier, Bruce Chabansky
  • Patent number: 11254904
    Abstract: A culture material including a 4-methyl-1-pentene polymer for cells, tissues, or organs, the culture material having a water contact angle at a culture surface of 50° to 100°, a sagging distance by a test method described below of 0 to 5 mm, and an oxygen permeation rate at a temperature of 23° C. and a humidity of 0% of 4500 to 90000 cm3/(m2×24 h×atm). A test piece having the same material as the culture material and the same thickness as the culture surface of the culture material and having a flat plate shape of 100 mm long and 10 mm wide is made. The test piece is fixed onto a test board in a state where the test piece protrudes lengthwise in a horizontal direction from a top surface of the test board, the top surface being horizontal.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: February 22, 2022
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Makoto Kiya, Hiroshi Miyasako, Katsutoshi Kinoshita, Tomoaki Matsugi, Takashi Oda, Katsuhiro Esashika
  • Patent number: 11255806
    Abstract: Described are interdigitated electrodes, which may optionally be plasmonic, useful for in vitro biosensing applications. Such devices may significantly reduce undesired background noise by separating the excitation source (light) from the detection signal (current), and thereby, leading to higher sensitivity for bioanalysis compared with conventional interdigitated electrodes. Also described are methods of making such interdigitated electrodes, which allow a substrate, which may optionally be plasmonic, to be tuned not only to maximize the targeted interaction of the cells with the nanoscale geometry, but also for the excitation wavelength to minimize biological sample interference.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: February 22, 2022
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Swaminathan Rajaraman, Jayan Thomas
  • Patent number: 11214767
    Abstract: Disclosed is an internally illuminated bioreactor, and related algae production methods, that employ integrated in-water grow light assemblies configured to manage the heat generated by lighting elements, such as light emitting diodes (“LEDs”) on the in-water grow lights. The bioreactor includes an outer shell and one or more in-water grow light fixtures positioned within the outer shell that are positioned around the perimeter of a hollow, internal tube. The lighting elements and internal tube are themselves contained within a preferably clear, exterior tube of the light fixture that allows light generated by the lighting elements to pass through to the algae culture inside of the growth chamber.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: January 4, 2022
    Assignee: Brightwave Partners, LLC
    Inventors: Kenneth Paul Peretti, Timothy Lee Shaw
  • Patent number: 11208625
    Abstract: The present invention provides a device for producing a large number of uniform spheroids by an easy method. The spheroid-producing device (1) at least includes a first surface (11), a second surface (12), and a plurality of wall surfaces (13). The second surface (12) faces the first surface (11). The respective wall surfaces (13) constitute a plurality of holes penetrating through the first surface and the second surface. In addition, an equivalent diameter of inscribed circles of openings in the first surface (11) is greater than an equivalent diameter of inscribed circles of openings in the second surface (12).
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: December 28, 2021
    Assignee: Corning Incorporated
    Inventor: Shoichiro Sumi
  • Patent number: 11203015
    Abstract: The present invention relates to a microfluidic device for creating within a cell assembly a cell-free area, comprising at least one cell chamber, wherein the at least one cell chamber comprises: —a fluid inlet for introducing fluid into the cell chamber, —a first area, —a second area, —at least one mechanical excluding means for excluding cells from the first area of the chamber and being operable between an excluding position and a releasing position optionally via an actuation line, wherein the second area of the cell chamber is outside of the operation range of the mechanical excluding means.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: December 21, 2021
    Assignee: TECHNISCHE UNIVERSITAT WIEN
    Inventors: Drago Sticker, Peter Ertl, Sarah Lechner