Patents Examined by Navin Natnithithadha
  • Patent number: 11026831
    Abstract: Provided herein are orthodontic devices and methods for patients whose orthodontic devices are causing a lisp. The device can comprise an aligner configured to fit over a patient's dental arch and comprising an occlusal surface section positioned over an occlusal surface of the patient's teeth. The aligner can comprise a barrier portion extending laterally and adjacent to a region of the dental arch, the barrier portion allowing the patient's tongue to form a seal against the barrier portion when the patient is speaking while wearing the device.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: June 8, 2021
    Assignee: Align Technology, Inc.
    Inventor: Eric Kuo
  • Patent number: 11026595
    Abstract: Provided are systems and method for identifying, generating and displaying a trend of one or more medical waveform related features.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: June 8, 2021
    Assignee: ORIDION MEDICAL 1987 LTD.
    Inventors: Joshua Lewis Colman, Michal Ronen
  • Patent number: 11026605
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: June 8, 2021
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, Jr., Victor Ha, Apurv Ullas Kamath, Aarthi Mahalingam, Steve Masterson, Melissa A. Nicholas, John Nolting, James R. Petisce, Jack Pryor, Sean Saint, Vance Swanson, Matthew D. Wightlin, Kum Ming Woo
  • Patent number: 11020011
    Abstract: Arterial diastolic pressure of a patient can be estimated using ventricular pressure information of a heart of the patient and heart sound information of the heart of the patient, such as a timing of at least one of a first heart sound (S1) or a second heat sound (S2), in certain examples, adjusted by a respective correction factor.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: June 1, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Michael J. Kane, Yinghong Yu, Jeffrey E. Stahmann
  • Patent number: 11020020
    Abstract: Systems and methods for determining lung recruitment/derecruitment dynamics of an individual are disclosed. The disclosed embodiments advantageously use variable ventilation of the individual to determine lung dynamics without necessitating additional, potentially harmful ventilation maneuvers.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: June 1, 2021
    Assignee: University of Vermont and State Agricultural College
    Inventors: Bradford J. Smith, Jason H. T. Bates
  • Patent number: 11020013
    Abstract: A physiological detection device includes an array sensor and a processing unit. The array sensor is configured to output array photoplethysmography (PPG) signals. The processing unit is configured to construct a 3D energy distribution, and identify an arc-like pattern in the 3D energy distribution according to the array PPG signals to accordingly identify different microcirculation states and an attaching status.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: June 1, 2021
    Assignee: PIXART IMAGING INC.
    Inventors: Chiung-Wen Lin, Wei-Ru Han, Yang-Ming Chou, Cheng-Nan Tsai, Ren-Hau Gu, Chih-Yuan Chuang
  • Patent number: 11007372
    Abstract: Disclosed are micro-wire stimulators that magnetically stimulate nearby cells and/or their processes (e.g., nerve fiber, axons, dendrites, etc.). The micro-wire includes one or more bends. The micro-wire stimulator can facilitate the creation of stronger field gradients in one direction with much smaller gradients in orthogonal directions, allowing for selective targeting, or avoiding, of specific cell types within a targeted region. The bent micro-wire stimulator may be implanted into the cortex of the brain to selectively stimulate nearby neural cells having a particular orientation relative to the stimulator. A tip portion of the micro-wire may be rounded, or it may have corners forming other suitable geometric shapes.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: May 18, 2021
    Assignee: The General Hospital Corporation
    Inventors: Seungwoo Lee, Shelley Fried
  • Patent number: 11012796
    Abstract: An external portion of an auditory prosthesis includes an external magnet that interacts with an implanted magnet to hold the external portion against the skin of a recipient. A magnetic component can be disposed proximate either or both of the external magnet or implanted magnet to channel the magnetic field associated therewith. The magnetic component can be moved relative to its associated magnet so as to adjust the magnetic field, and thus, the retention force between the magnets.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: May 18, 2021
    Assignee: Cochlear Limited
    Inventors: Marcus Andersson, Johan Gustafsson, Henrik Fyrlund, Stefan Magnander, Goran Bjorn
  • Patent number: 11000213
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: May 11, 2021
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jack Pryor, Paul V. Goode, Jr., James H. Brauker, Aarthi Mahalingam
  • Patent number: 11000257
    Abstract: Described embodiments include a system (74), including a garment (76), configured to cover at least a portion of a body of a subject, one or more sound transmitters (92) coupled to the garment, configured to transmit sound (128) through the body of the subject, and a plurality of sound detectors (22, 96) coupled to the garment. The sound detectors are configured to detect the transmitted sound following passage of the transmitted sound through the body of the subject, to detect body sound (25) emanating from the body of the subject, and to generate a plurality of sound-detector outputs in response to detecting the transmitted sound and the body sound. The system further includes a processor (98), configured to process the sound-detector outputs, and to generate a processor output in response thereto. Other embodiments are also described.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: May 11, 2021
    Assignee: SANOLLA LTD.
    Inventors: Doron Adler, David Linhard, Inbal Avraham, Liat Adler, Liran Ziso Avraham
  • Patent number: 11000209
    Abstract: The present disclosure relates to methods and systems for estimating an efficiency of lungs of a patient receiving respiratory care. A blender has a primary input port for receiving a first gas to be delivered to the patient and one or more secondary input ports for receiving a second gas to be delivered to the patient from one or more gas sources. A patient-side port of the blender delivers the first and second gases to the patient. A gas composition sensor measures a fraction of the first gas and a gas flow sensor measures a flow of the first gas. A controller causes a sequential delivery of the first and second gases to the patient and estimates a functional residual capacity of the patient based on measurements from the gas composition sensor and from the gas flow sensor. The controller may also estimate a cardiac output of the patient.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: May 11, 2021
    Assignee: ROSTRUM MEDICAL INNOVATIONS INC.
    Inventors: James Garry, Nathan Ayoubi, Aron Fredrick, Willem J. Atsma, Nicolas Christofi, Hanna McGregor
  • Patent number: 10993623
    Abstract: A device for carrying out mirror therapy includes: a camera for filming a healthy limb of a patient, a work surface on which the patient positions his healthy limb or affected limb, a screen for displaying the image of the healthy limb which is positioned on the work surface and which is filmed by the camera, the screen preventing the patient from directly seeing his healthy limb or affected limb on the work surface, and a support structure which is connected to the work surface and on which the screen and the camera are mounted. The device has a mirror fixed behind the screen. The camera films the healthy limb reflected in the mirror, and the image displayed by the screen is a reflection of the healthy limb in the mirror.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 4, 2021
    Inventors: Nicolas Fournier, Davy Christophe Luneau
  • Patent number: 10993659
    Abstract: Described embodiments include an apparatus, including a display and a processor. The processor is configured to navigate a catheter to a particular location within a body of a subject, using each one of a plurality of electrodes coupled to the body of the subject. The processor is further configured to identify, subsequently, from a signal that represents an impedance between a given pair of the electrodes, that a phrenic nerve of the subject was stimulated by a pacing current passed from the catheter into tissue of the subject at the particular location, and to generate an output on the display, in response to the identifying. Other embodiments are also described.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: May 4, 2021
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Lior Botzer, Daniel Osadchy
  • Patent number: 10993641
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: May 4, 2021
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, James Patrick Thrower, Paul V. Goode, Jr.
  • Patent number: 10993793
    Abstract: There is provided a system and method for following and conducting laboratory procedures for preventing errors and fatigue of the user. The system involves input means, such as a microscope, and a camera connected to the input means, while the camera creates images of the input means. A computer is connected to the camera, and it processes the images so that augmented reality glasses which are also connected to the computer, are capable of having those images projected thereon. The computer also has laboratory protocol files installed thereon, and it projects images of the protocols onto the glasses. The projected images do not interfere with a user's natural vision.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: May 4, 2021
    Inventor: Haim Sheena
  • Patent number: 10993642
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: May 4, 2021
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, Jr., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin
  • Patent number: 10987483
    Abstract: Aspects of the present disclosure provide methods, apparatuses, and systems for closed-loop sleep protection and/or sleep regulation. According to an aspect, a biosignal parameter and ambient noise are measured. The biosignal parameter is used to determined sleep condition of a subject. The sleep condition is determined based on: (1) one or more of personalized sleep data, (2) historical sleep data collected for a subset of society, or (3) a combination of both. Based on the sleep condition, an arousal threshold is determined. Based on the ambient noise and the determined sleep condition, one or more actions are taken to regulate sleep and avoid sleep disruption by using sound masking or active noise reduction (ANR).
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: April 27, 2021
    Assignee: BOSE CORPORATION
    Inventors: Dale McElhone, Jeffrey M. Ellenbogen, Adam C. Furman, Jonathan Zonenshine, Christopher R. Paetsch, Michael Patrick O'Connell
  • Patent number: 10987025
    Abstract: Systems and methods are provided for a respiratory sensor for a medical monitoring system that does not require an internal power source. The systems and methods adjust an electrical characteristic of a respiratory sensor based on a property of interest of an airflow path, receiving an excitation signal, and generating a response based on the excitation signal and the electrical characteristic.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: April 27, 2021
    Assignee: General Electric Company
    Inventors: Ville Vartiovaara, Otto Valtteri Pekander
  • Patent number: 10980419
    Abstract: An implantable position detecting system is configured to detect a position of an implantable device with respect to a body structure. The system includes at least one proximity measuring transducer configured to be implanted on the body structure a distance from the implantable device, the at least one proximity measuring transducer being configured to receive energy from an external electromagnetic field generated by an external sensing interface, wherein the at least one proximity sensor is configured to emit an emitted signal responsive to the electromagnetic energy and to receive distance information comprising a sensing signal that is responsive to the distance from the implantable device.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: April 20, 2021
    Assignee: ORTHODX INC
    Inventors: John D. Lucey, Paul Ierymenko
  • Patent number: 10980485
    Abstract: A measuring apparatus as an aspect of the present invention includes: a first signal acquirer that acquires a pulse wave signal of a living body; a second signal acquirer that acquires a body motion signal of the living body; a frequency analyzer that converts the pulse wave signal and the body motion signal to a frequency domain to generate frequency domain signals, and estimates a frequency of a pulse wave of the living body on the basis of the frequency domain signals; and a time domain analyzer that calculates biological information about the living body on the basis of the frequency.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 20, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhiro Kanishima, Takashi Sudo