Patents Examined by Navin Natnithithadha
  • Patent number: 11154215
    Abstract: There is provided a method that includes receiving pulse-oximetry measurements (SpO2) of a patient's peripheral arterial blood oxygen saturation during a first time period, and receiving breathing samples of the patient. The method further includes determining, using breathing samples of the patient, oxygen partial pressure measurements (PAO2) and carbon dioxide partial pressure measurements (PACO2) from exhaled air of the patient during a steady-state breathing of the patient during the first time period.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: October 26, 2021
    Assignee: Medipines Corporation
    Inventors: Steve Lee, John B. West
  • Patent number: 11154237
    Abstract: A method for administering tests using a regional antigen testing kit is provided. The method comprises providing the regional antigen testing kit, extracting a predetermined amount of concentrated antigen from one of a plurality of concentrated antigens, dispensing the predetermined amount of concentrated antigen into a corresponding one of a plurality of wells, as indicated by visual indicia, repeating the extracting and dispensing steps until a desired number of the plurality of wells contain concentrated antigen, providing a prick tester having a plurality of needles extending thereon, aligning the plurality of needles of the prick tester with the plurality of wells, inserting each of the plurality of needles of the prick tester into one of the plurality of wells, and applying the plurality of needles of the prick tester to the skin of a patient to elicit a potential response.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: October 26, 2021
    Assignee: ROCA MEDICAL LTD.
    Inventors: James Strader, Jovan Hutton Pulitzer
  • Patent number: 11147478
    Abstract: A patient monitor is disclosed for detecting patient movement or abnormal breathing. Images of a patient are obtained by a stereoscopic camera. These images are then processed by a 3D position determination module which determines measurements indicative of positions of at least part of a patient. The obtained measurements are then passed to a model generation module which generates a breathing model of the variation in position of the at least part of a patient during a breathing cycle. Subsequently abnormal breathing or patient movement can be detected by processing further images obtained by the stereoscopic camera to determine more measurements indicative of positions of at least part of a patient. These measurements are then compared with a stored breathing model by a comparison module.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: October 19, 2021
    Assignee: VISION RT LIMITED
    Inventors: Ivan Daniel Meir, Norman Ronald Smith, Anthony Christopher Ruto
  • Patent number: 11147483
    Abstract: Devices and methods are described for providing continuous measurement of an analyte concentration. In some embodiments, the device has a sensing mechanism and a sensing membrane that includes at least one surface-active group-containing polymer and that is located over the sensing mechanism. The sensing membrane may have a bioprotective layer configured to substantially block the effect and/or influence of non-constant noise-causing species.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: October 19, 2021
    Assignee: DexCom, Inc.
    Inventors: Robert J. Boock, Monica A. Rixman, Huashi Zhang, Michael J. Estes, Kristina Lawrence
  • Patent number: 11141547
    Abstract: An inhalation monitoring system includes an inhaler having a medicament delivery apparatus configured to deliver medicament to a user during an inhalation of the user; inhalation monitoring apparatus, configured to, during the inhalation, gather data for determining a measure of the user's lung function and/or lung health; and a processor configured to receive the data from the inhalation monitoring apparatus and, using the data, determine a measure of the user's lung function and/or lung health.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: October 12, 2021
    Assignee: Norton (Waterford) Limited
    Inventors: Mark Milton-Edwards, Henry Chrystyn, Mark Steven Morrison, Douglas E. Weitzel
  • Patent number: 11135442
    Abstract: An apparatus for providing pulsed electromagnetic field (PEMF) treatment that comprises an enclosure; one or more first electrically-conductive loops connected to one or more corresponding signal generators configured to generate one or more PEMF signals at the one or more first electrically-conductive loops; one or more second electrically-conductive loops each connected to a respective tunable non-active circuit, the one or more second electrically-conductive loops being arranged at a predetermined distance from the one or more first electrically-conductive loops within the enclosure to form an array, each tunable non-active circuit having at least one variable capacitor for tuning each of the one or more second electrically-conductive loops to the one or more PEMF signals.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: October 5, 2021
    Assignee: AAH HOLDINGS LLC
    Inventors: André A. Dimino, Matthew Drummer, Junior Pusey, Hector Torres, Francis J. Russo
  • Patent number: 11134896
    Abstract: The present embodiments relate generally to applicators of on-skin sensor assemblies for measuring an analyte in a host, as well as their method of use and manufacture. In some aspects, an applicator for applying an on-skin sensor assembly to a skin of a host is provided. The applicator includes an applicator housing, a needle carrier assembly comprising an insertion element configured to insert a sensor of the on-skin sensor assembly into the skin of the host, a holder releasably coupled to the needle carrier assembly and configured to guide the on-skin sensor assembly while coupled to the needle carrier assembly, and a drive assembly configured to drive the insertion element from a proximal starting position to a distal insertion position, and from the distal insertion position to a proximal retraction position.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: October 5, 2021
    Assignee: DexCom, Inc.
    Inventors: John Michael Gray, Jennifer Blackwell, Paul V. Neale, Justen Deering England, Andrew Joncich, Cameron Brock, Peter C. Simpson, Thomas Metzmaker, Neel Narayan Shah, Mark Douglas Kempkey, Patrick John Castagna, Warren Terry, Jason Halac, Christian Michael Andre George, Daniel E. Apacible, John Charles Barry, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Jason C. Wong, Remy E. Gagnon, David DeRenzy, Randall Scott Koplin, Alan Baldwin, Young Woo Lee, David A. Keller, Louise Emma van den Heuvel, Carol Wood Sutherland
  • Patent number: 11135047
    Abstract: An incontinence device is used to apply supporting pressure to an anterior wall of an inferior third of a vaginal canal in the approximate plane of a pubococcygeal muscle and ultimately to a urethra for controlling incontinence. The incontinence device includes a first member having a first end and second end, as well as a second member resiliently connected to the first member. The second member is biased outwardly from the first member to direct the first end of the first member toward the anterior wall of the vaginal canal in a manner providing a support structure transferring upward force for support of the urethra by the first end of the first member.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: October 5, 2021
    Assignee: OVALA, INC.
    Inventors: Andrew P. Zeltwanger, Camaria Lehman
  • Patent number: 11129894
    Abstract: Materials and methods for enhancing the effectiveness of proton radiation therapy (e.g., high linear energy transfer (LET) proton radiation therapy) against tumor cells are provided herein.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: September 28, 2021
    Assignees: - Humanetics Corporation, The Trustees of the University of Pennsylvania
    Inventors: Adam J. Harvey, Michael D. Kaytor, Keith Cengel, Eric Stanton Diffenderfer
  • Patent number: 11129550
    Abstract: One embodiment provides a method, including: obtaining, at an information handling device, at least one physiological data point that corresponds to a physiological metric associated with a user; determining, using a processor, an activity type of the user; determining, using a processor, whether the at least one physiological data point is outside a threshold range for the physiological metric based on the activity type; and providing, responsive to determining that the at least one physiological data point is outside the threshold range, a notification. Other aspects are described and claimed.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 28, 2021
    Assignee: Lenovo (Singapore) Pte. Ltd.
    Inventors: John Weldon Nicholson, Daryl Cromer
  • Patent number: 11123009
    Abstract: The present disclosure pertains to a system configured to facilitate prediction of a sleep stage and intervention preparation in advance of the sleep stage's occurrence. The system comprises sensors configured to be placed on a subject and to generate output signals conveying information related to brain activity of the subject; and processors configured to: determine a sample representing the output signals with respect to a first time period of a sleep session; provide the sample to a prediction model at a first time of the sleep session to predict a sleep stage of the subject occurring around a second time; determine intervention information based on the prediction of the sleep stage, the intervention information indicating one or more stimulator parameters related to periheral stimulation; and cause one or more stimulators to provide the intervention to the subject around the second time of the sleep session.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: September 21, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gary Nelson Garcia Molina, Erik Bresch, Ulf Grossekathöfer, Adrienne Heinrich, Sander Theodoor Pastoor
  • Patent number: 11109797
    Abstract: An electronic device includes a translucent layer that forms a portion of an exterior of the electronic device, an opaque material positioned on the translucent layer that defines micro-perforations, and a processing unit operable to determine information about a user via the translucent layer. The processing unit may be operable to determine the information by transmitting optical energy through a first set of the micro-perforations into a body part of the user, receiving a reflected portion of the optical energy from the body part of the user through a second set of the micro-perforations, and analyzing the reflected portion of the optical energy.
    Type: Grant
    Filed: March 31, 2018
    Date of Patent: September 7, 2021
    Assignee: Apple Inc.
    Inventors: Qiliang Xu, Richard G. Huizar
  • Patent number: 11109974
    Abstract: Devices and methods for providing localized pressure to a region of a patient's heart to improve heart functioning, including: (a) a jacket made of a flexible biocompatible material, the jacket having an open top end that is received around the heart and a bottom portion that is received around the apex of the heart; and (b) at least one inflatable bladder disposed on an interior surface of the jacket, the inflatable bladder having an inelastic outer surface positioned adjacent to the jacket and an elastic inner surface such that inflation of the bladder causes the bladder to deform substantially inwardly to exert localized pressure against a region of the heart.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: September 7, 2021
    Assignee: DiaxaMed, LLC
    Inventors: Aaron J. Hjelle, Tanya Shipkowitz
  • Patent number: 11103165
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 31, 2021
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Thomas A. Peyser, Adam Heller
  • Patent number: 11097078
    Abstract: A system and method for facilitating and maintaining various states of a user consciousness, including the transition between a conscious and unconscious state, is provided. The system and method include use of a smart device having a user interface, a biometric sensor coupled to a user and configured to transmit the user's biometric data to the smart device and an environmental sensor configured to transmit environmental data to the smart device. The smart device controls one or more environmental systems proximate the user and an audio/visual device proximate the user to facilitate transitioning the state of the user.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: August 24, 2021
    Inventor: Cary Kochman
  • Patent number: 11097122
    Abstract: In various embodiments methods and devices are provided for facilitating locomotor function and/or voiding of bladder and/or bowel in a subject with a neuromotor disorder. In certain embodiments the methods involve providing magnetic stimulation of the spinal cord at a location, frequency and intensity sufficient to facilitate locomotor function and/or voiding of bladder and/or bowel.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: August 24, 2021
    Assignee: The Regents of the University of California
    Inventor: Daniel C. Lu
  • Patent number: 11096591
    Abstract: A device determines values for one or more metrics that indicate the quality of a patient's sleep based on sensed physiological parameter values. Sleep efficiency, sleep latency, and time spent in deeper sleep states are example sleep quality metrics for which values may be determined. The sleep quality metric values may be used, for example, to evaluate the effectiveness of a therapy delivered to the patient by a medical device. In some embodiments, determined sleep quality metric values are automatically associated with the therapy parameter sets according to which the medical device delivered the therapy when the physiological parameter values were sensed, and used to evaluate the effectiveness of the various therapy parameter sets. The medical device may deliver the therapy to treat a non-respiratory neurological disorder, such as epilepsy, a movement disorder, or a psychological disorder. The therapy may be, for example, deep brain stimulation (DBS) therapy.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: August 24, 2021
    Assignee: Medtronic, Inc.
    Inventors: Keith A. Miesel, Kenneth T. Heruth, Jonathan C. Werder, Steve R. LaPorte, Nina M. Graves
  • Patent number: 11096601
    Abstract: Some embodiments provide a wearable monitoring device including a motion sensor and a photo (PPG) sensor. The PPG sensor includes (i) a periodic light source, (ii) a photo detector, and (iii) circuitry determining a user's heart rate from an output of the photo detector. Some embodiments provide methods for operating a heart rate monitor of a wearable monitoring device to measure one or more characteristics of a heartbeat waveform. Some embodiments provide methods for operating the wearable monitoring device in a low power state when the device determines that the device is not worn by a user.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: August 24, 2021
    Assignee: Fitbit, Inc.
    Inventors: Jung Ook Hong, Shelten Gee Jao Yuen
  • Patent number: 11090504
    Abstract: A device for influencing biological sequences in living tissue, in particular a human body, includes a field generation device for generating the pulsating magnetic field to be applied to at least a part of the tissue, and a pulse generator controlling the field generation device. The pulsating magnetic field is composed of a sequence of primary pulses which are formed by a plurality of superimposed sub-pulses, the pulse repetition rate of which is between 0.01 and 1000 Hz. The sequence of primary pulses separated is from a second sequence of primary pulses by a rest phase. The curve profile of the maximum amplitude of the primary pulses has a slope mB of ??<mB<?0.1 at the beginning of the rest phase and/or has a slope mE of ?>mE>0.1 at the end of the rest phase.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: August 17, 2021
    Assignee: Bemer Int. AG
    Inventor: Peter Gleim
  • Patent number: 11083413
    Abstract: Methods and systems are disclosed herein for a system configured to determine a position of a brain monitoring user device, and a brain state of a user. Based on the determined position and the determined brain state, the system provides access to a set of media guidance application operations corresponding to the determined brain state and to brain regions corresponding to the determined position of the brain monitoring user device.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: August 10, 2021
    Assignee: Rovi Guides, Inc.
    Inventors: Walter R. Klappert, Kanako Tomita, David John Wheatley