Patents Examined by Neil P Hammell
  • Patent number: 11293022
    Abstract: This invention pertains to single-stranded carrier nucleic acids and their methods of use for enhancing genome editing ribonucleoprotein complex transfection into cells and the resulting enhancement of CRISPR editing on the target DNA within those cells, as well as introduction of chemical modifications which reduce the integration of the single-stranded carrier nucleic acids at double-stranded breaks.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: April 5, 2022
    Assignee: Integrated DNA Technologies, Inc.
    Inventors: Rolf Turk, Mark A. Behlke, Chris Vinci
  • Patent number: 11286468
    Abstract: Engineered CRISPR-Cas9 nucleases with altered and improved PAM specificities and their use in genomic engineering, epigenomic engineering, and genome targeting.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: March 29, 2022
    Assignee: The General Hospital Corporation
    Inventors: J. Keith Joung, Benjamin Kleinstiver
  • Patent number: 11279926
    Abstract: The present disclosure provides methods, kits, and compositions for generating DNA molecules encoding CRISPR/Cas guide RNAs (e.g., Cas9 single guide RNAs or Cas9 targeter RNAs). A library of such DNA molecules can be generated from any DNA source. The methods include a step of contacting target DNA with one or more DNA endonucleases that specifically bind to and cleave within a recognition sequence that includes a PAM sequence, to generate a plurality of cleavage fragments, to which a DNA adapter can be attached. A distal-cleaving DNA endonuclease can be used that specifically binds to a recognition sequence in the DNA adapter and cleaves at a site within the attached DNA cleavage fragments to generate a library of CRISPR/Cas guide sequences. After removal of all or a portion of the DNA adapter, a constant region of a guide RNA can be attached to generate DNA molecules encoding CRISPR/Cas guide RNAs.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: March 22, 2022
    Assignee: The Regents of the University of California
    Inventors: Andrew B. Lane, Rebecca Heald
  • Patent number: 11274318
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 15, 2022
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11274305
    Abstract: Methods and kits for excising HIV-1 DNA in vivo are provided, which employ Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Associated (cas) proteins. Vectors harboring nucleic acids encoding one or more guide RNA, wherein said guide RNA hybridizes with a target HIV-1 DNA are also provided.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: March 15, 2022
    Assignees: TRUSTEES OF DARTMOUTH COLLEGE, United States Government as Represented by The Department of Veterans Affairs
    Inventors: Alexandra L. Howell, Susan K. Eszterhas
  • Patent number: 11268082
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. In some embodiments, fusion proteins of nucleic acid programmable DNA binding proteins (napDNAbp), e.g., Cpf1 or variants thereof, and nucleic acid editing proteins or protein domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of a napDNAbp (e.g., CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute) and nucleic acid editing proteins or domains, are provided.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: March 8, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Alexis Christine Komor, Liwei Chen, Holly A. Rees
  • Patent number: 11261470
    Abstract: The present disclosure relates to a recombinant gram-negative bacterial cell comprising: a) a mutant spr gene encoding a spr protein having a mutation at one or more amino acids selected from D133, H145, H157, N31, R62, I70, Q73, C94, S95, V98, Q99, R100, L108, Y115, V135, L136, G140, R144 and G147 and b) a gene capable of expressing or overexpressing one or more proteins capable of facilitating protein folding, such as FkpA, Skp, SurA, PPiA and PPiD, wherein the cell has reduced Tsp protein activity compared to a wild-type cell, methods employing the cells, use of the cells in the expression of proteins in particular antibodies, such as anti FcRn antibodies and proteins made by the methods described herein.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: March 1, 2022
    Assignee: UCB BIOPHARMA SRL
    Inventors: Philip Jonathan Bassett, David Paul Humphreys, Pareshkumar Manjibhai Patel
  • Patent number: 11254918
    Abstract: Compositions and methods are provided for modulating growth of a genetically modified bacterial cell present in a human organ, for modulating growth of a genetically modified bacterial cell in an organ (e.g., gut), for displacing at least a portion of a population of bacterial cells in an organ, and for facilitating gut colonization by a genetically modified bacterial cell. Also provided are genetically modified bacterial cells, e.g., cells that include a heterologous carbohydrate-utilization gene or gene set that provides for the ability to utilize as a carbon source a rare carbohydrate of interest that is utilized as a carbon source by less than 50% of bacterial cells present in a human microbiome.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: February 22, 2022
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Novome Biotechnolooies, Inc.
    Inventors: Justin L. Sonnenburg, Weston R. Whitaker, Elizabeth Stanley, William C. DeLoache
  • Patent number: 11254933
    Abstract: Methods, compositions, and kits are provided for CRISPR/Cas mediated transcriptional modulation.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: February 22, 2022
    Assignee: The Regents of the University of California
    Inventors: Luke A Gilbert, Max Horlbeck, Martin Kampmann, Lei S Qi, Jonathan S Weissman
  • Patent number: 11249084
    Abstract: This document relates to materials and methods involved in assessing inflammatory bowel disease patients at risk for developing cancer. For example, materials and methods for monitoring colorectal cancer risk in ulcerative colitis patients are provided.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: February 15, 2022
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Megan Garrity-Park, Thomas C. Smyrk, Edward V. Loftus, Jr., William J. Sandborn
  • Patent number: 11242543
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: February 8, 2022
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11208638
    Abstract: The present disclosure provides a Cas9 heterodimer, as well as nucleic acids encoding the Cas9 heterodimer, and host cells comprising the nucleic acids. The present disclosure provides a system that includes a Cas9 heterodimer of the present disclosure and at least one of: a Cas9 guide RNA, and a dimerizing agent. A Cas9 heterodimer of the present disclosure is useful in a wide variety of applications, which are also provided.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: December 28, 2021
    Assignee: The Regents of the University of California
    Inventors: Samuel H. Sternberg, Jennifer A. Doudna, Addison V. Wright
  • Patent number: 11203759
    Abstract: The invention provided herein relates to sequence determinants that elicit certain levels of gene expression and methods for obtaining engineered ligand-responsive gene switches comprising these sequence determinants. More particularly, the invention provided herein relates to molecular building blocks (i.e., discrete nucleotide sequences), synthetic ligand-responsive gene switches comprising an assembly of these molecular building blocks, and methods of using synthetic ligand-responsive gene switches as customizable and controllable expression systems and sensors.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: December 21, 2021
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Patricia J. Kiley, Dan M. Park
  • Patent number: 11203620
    Abstract: The present invention provides a modified eukaryotic cell wherein the modified eukaryotic cell is not able to provide an SSN6-like protein that exerts its wildtype function and/or wildtype activity, the amount of SSN6-like protein being present in the modified eukaryotic cell differs from the amount of SSN6-like protein being present in its wildtype form, and/or essentially no SSN6-like protein is present in the modified cell. Additionally, the present invention provides a polynucleotide sequence comprising a modified ssn6-like gene, and a vector comprising said polynucleoptide. Additionally provided is an expression vector comprising a promoter that is repressed in the presence of SSN6-like protein, and a host cell comprising said vectors. The present invention further refers to a method for determining the purity of a composition by using the modified eukaryotic cell, to a method of expressing gene(s) of interest, and eukaryotic cells comprising modified ssn6-like gene.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: December 21, 2021
    Assignee: Novartis AG
    Inventors: Clemens Achmüller, Ferdinand Zepeck, Franz Hartner, Thomas Specht
  • Patent number: 11198879
    Abstract: The present invention provides novel reagents and a cloning procedure based on homologous recombination for the site-directed cloning of a DNA fragment to a vector at designed site(s). The cloning reagents are made of mixture of extracts from at least two different cell types, preferably a mixture made of extracts from wild-type E. coli and S. cerevisiae. Due to the activity of the mixture of cell extracts, recombination occurs between the 3? and 5?-ends of the target DNA and at the ends of linearized vector, which facilitates in-frame construction of expression vectors.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: December 14, 2021
    Assignee: VIET NAM NATIONAL UNIVERSITY HO CHI MINH CITY
    Inventors: Phuong Thao Thi Dang, My Trinh Thi Nguyen, Nghia Hieu Nguyen, Thuoc Linh Tran
  • Patent number: 11186849
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: November 30, 2021
    Assignees: The Regents of the University of California, University of Vienna, Emmanuelle Charpentier
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11186817
    Abstract: The present invention relates to an optimal medium for growing a cell line auxotrophic for tetrahydrofolate (THF) and producing a desired material in the cell with high efficiency. In particular, the present invention provides a method for enhancing cell growth by adding tetrahydrofolate (THF), or a precursor or derivative thereof into a chemical composition cell medium.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 30, 2021
    Assignee: IUCF-HYU (INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY)
    Inventors: Hong-Woo Park, Bong Gyun Kim
  • Patent number: 11180791
    Abstract: Products and methods for assessing the predisposition of a subject to develop an injury-induced chronic mechanical pain and/or an inflammatory-induced chronic thermal pain are provided. More specifically, methods for the assessment of the predisposition of a subject to develop an injury-induced chronic mechanical pain and/or an inflammatory-induced chronic thermal pain using the MYO1A gene as a biomarker and methods of treating selected subjects are provided.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: November 23, 2021
    Assignee: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventor: Abdelaziz Moqrich
  • Patent number: 11180792
    Abstract: The present disclosure provides compositions and methods for labeling a single stranded target nucleic acid. Subject compositions include a Cas9 protein, a Cas9 guide RNA, and a quenched PAMmer. A subject quenched PAMmer is a single stranded oligonucleotide having (i) a protospacer adjacent motif (PAM) sequence; (ii) a detectable label; (iii) a quencher moiety that quenches the detectable label; and (iv) at least one of: a specificity segment positioned 5? of the PAM sequence, and an orientation segment positioned 3? of the PAM sequence. In the subject methods, the Cas9 protein cleaves the quenched PAMmer at a cleavage site positioned between the detectable label and the quencher moiety to produce: (a) a first cleavage product that is hybridized with the target nucleic acid and comprises the detectable label; and (b) a second cleavage product that is not hybridized with the target nucleic acid and comprises the quencher moiety.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: November 23, 2021
    Assignee: The Regents of the University of California
    Inventors: Mitchell R. O'Connell, Jennifer A. Doudna
  • Patent number: 11180743
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: November 23, 2021
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield