Patents Examined by Nicole F Lavert
  • Patent number: 11878173
    Abstract: Systems and methods for stimulation of neurological tissue generate stimulation trains with temporal patterns of stimulation, in which the interval between electrical pulses (the inter-pulse intervals) changes or varies over time. Compared to conventional continuous, high rate pulse trains having regular (i.e., constant) inter-pulse intervals, the non-regular (i.e., not constant) pulse patterns or trains that embody features of the invention provide a lower average frequency.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: January 23, 2024
    Assignee: Duke University
    Inventors: Warren M. Grill, David T. Brocker
  • Patent number: 11878162
    Abstract: A device providing treatment by radiofrequency field and electrotherapy to a patient comprises a control unit and an applicator comprising at least one radiofrequency electrode providing a radiofrequency field having a frequency in a range of 0.1 MHz to 25 GHz and an energy flux density in a range of 0.01 mW·mm?2 to 10 W·mm?2 configured to heat a body part of the patient, and at least one electrotherapy electrode providing an electric current causing contraction of a muscle of the body part of the patient, wherein the applicator is configured to be stationary during treatment and to be fixed in contact with a body of the patient. Additional devices providing treatment by radiofrequency field and electrotherapy to a patient and a method of treatment of a patient by radiofrequency and electrotherapy are also described.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: January 23, 2024
    Assignee: BTL Healthcare Technologies A.S.
    Inventor: Tomás Schwarz
  • Patent number: 11872394
    Abstract: Described herein are systems and methods for the treatment of pain using electrical nerve conduction block (ENCB). Contrary to other methods of pain treatment, the ENCB can establish a direct block of neural activity, thereby eliminating the pain. Additionally, the ENCB can be administered without causing electrochemical damage. An example method can include: placing at least one electrode contact in electrical communication with a region of a subject's spinal cord; applying an electrical nerve conduction block (ENCB) to a nerve in the region through the at least one electrode contact; and blocking neural activity with the ENCB to reduce the pain or other unwanted sensation in the subject.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: January 16, 2024
    Assignees: CASE WESTERN RESERVE UNIVERAITY, NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Patent number: 11872400
    Abstract: An implantable wireless lead includes an enclosure, the enclosure housing: one or more electrodes configured to apply one or more electrical pulses to a neural tissue; a first antenna configured to: receive, from a second antenna and through electrical radiative coupling, an input signal containing electrical energy, the second antenna being physically separate from the implantable neural stimulator lead; one or more circuits electrically connected to the first antenna, the circuits configured to: create the one or more electrical pulses suitable for stimulation of the neural tissue using the electrical energy contained in the input signal; and supply the one or more electrical pulses to the one or more electrodes, wherein the enclosure is shaped and arranged for delivery into a subject's body through an introducer or a needle.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: January 16, 2024
    Assignee: Curonix LLC
    Inventors: Laura Tyler Perryman, Patrick Larson, Chad Andresen
  • Patent number: 11865350
    Abstract: Devices, systems, and methods for providing patient wear compliance information are provided. For example, a medical device includes a plurality of electrodes configured to be continuously coupled externally to a patient and to monitor electrical activity on the skin of the patient. The system also includes at least one motion sensor configured to generate a motion signal based upon movement of the patient. The system further includes a processor configured to receive an electrical signal based on the monitored electrical activity, record a wear onset event based on the electrical signal and the motion signal, record a wear offset event based on one or more of the electrical signal and the motion signal indicating that the patient is not wearing the medical device, and output a graphical representation including information regarding the patient's wear compliance based on the recorded wear onset event and the recorded wear offset event.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: January 9, 2024
    Assignee: ZOLL Medical Corporation
    Inventors: Pai Li, Steven J. Szymkiewicz, Shane S. Volpe, Gary A. Freeman
  • Patent number: 11864859
    Abstract: A system includes a first computing device comprising a processor coupled to a memory. The processor and the memory are configured to receive at least one of (i) information indicative of treatment of a victim by a first caregiver using the first computing device and (ii) information indicative of a health status of the victim; determine that treatment of the victim by the first caregiver using the first computing device is completed; and transmit the received information to a second computing device.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: January 9, 2024
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: John Amann, Gary A. Freeman
  • Patent number: 11865351
    Abstract: A wearable cardioverter defibrillator system includes a support structure that a patient can wear. The system also includes electrodes that contact the patient, and define two or more channels from which ECG signals are sensed. A processor may evaluate the channels by analyzing their respective ECG signals, to determine which contains less noise than the other(s). The analysis can be by extracting statistics from the ECG signals, optionally after first processing them, and then by comparing these statistics. These statistics may include tall peak counts, amplitudes of peaks compared to historical peak amplitudes, signal baseline shift, dwell time near a baseline, narrow peak counts, zero crossings counts, determined heart rates, and so on. Once the less noisy signal is identified, its channel can be followed preferentially or to the exclusion of other channels, for continuing monitoring and/or determining whether to shock the patient.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: January 9, 2024
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Jaeho Kim, Joseph L. Sullivan, Robert Marx
  • Patent number: 11857791
    Abstract: An implant unit configured for implantation into a body of a subject is provided. The implant unit may include a flexible carrier unit including a central portion and two elongated arms extending from the central portion, an antenna, located on the central portion, configured to receive a signal, at least one pair of electrodes arranged on a first elongated arm of the two elongated arms. The at least one pair of electrodes may be adapted to modulate a first nerve. The elongated arms of the flexible carrier may be configured to form an open ended curvature around a muscle with the nerve to be stimulated within an arc of the curvature.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: January 2, 2024
    Assignee: NYXOAH SA
    Inventors: Adi Mashiach, Itzik Mashiach
  • Patent number: 11850088
    Abstract: A wearable medical device comprises a harness, a therapy electrode and an electrocardiogram (ECG) sensing electrode included within the harness, an audio transducer coupled to the therapy electrode or to the ECG electrode and configured to monitor heart sounds of a user of the wearable therapeutic device, and a controller configured to receive signals from the audio transducer regarding the heart sounds of the user and to transmit data regarding the heart sounds to an external system for processing and analysis.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: December 26, 2023
    Assignee: ZOLL MEDICAL CORPORATION
    Inventor: Thomas E. Kaib
  • Patent number: 11844951
    Abstract: An ear-piece assembly includes (i) an antenna portion enclosing a transmitting antenna configured to send one or more input signals containing electrical energy to a passive implantable neural stimulator device such that the passive implantable neural stimulator generates one or more stimulation pulses suitable for stimulating a neural structure in the craniofacial region solely using the electrical energy in the input signals; and (ii) an enclosure coupled to the antenna portion, wherein enclosure is sized and shaped to be mounted on a helix portion of an ear such that, when worn by a patient, weight from the enclosure is distributed over the helix portion of the ear for the enclosure to rest thereon, wherein the enclosure comprises (i) a controller module configured to provide the one or more input signals to the transmitting antenna, and (ii) a battery adapted to provide energy to the ear-piece assembly.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: December 19, 2023
    Assignee: Curonix LLC
    Inventors: Laura Tyler Perryman, Chad David Andresen, Graham Patrick Greene
  • Patent number: 11844566
    Abstract: Described here are devices, systems, and methods for closing the left atrial appendage. The methods described here utilize a closure device for closing the left atrial appendage and guides or expandable elements with ablation or abrading elements to ablate or abrade the left atrial appendage. In general, these methods include positioning a balloon at least partially within the atrial appendage, positioning a closure assembly of a closure device around an exterior of the atrial appendage, inflating the balloon, partially closing the closure assembly, ablating the interior tissue of the atrial appendage with the inflated balloon, removing the balloon from the atrial appendage, and closing the atrial appendage with the closure assembly.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: December 19, 2023
    Assignee: AtriCure, Inc.
    Inventors: Gregory W. Fung, Randall J. Lee, Russell Pong, Robert L. Clark, III, Arnold M. Escano
  • Patent number: 11832956
    Abstract: A system and method for finding a Pareto-optimal solution for automated detection, warning, and abatement of a medical condition based on a cost of event intervention in a patient is disclosed. The method includes acquiring at least one biological signal from the patient via at least one sensor of a medical device, detecting an abnormal biological event based on changes in the biological signal, and delivering at least one of a therapy and a warning. The method includes logging a set of parameters including at least one of a detection parameter, a therapy parameter, and a therapy modality. The method includes identifying an optimal set of parameters that yield a Pareto-optimal cost of event intervention by iteratively determining at least one metric over a time window, determining the cost of event intervention, and modifying at least one parameter, until the cost of event intervention meets an acceptability criteria.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: December 5, 2023
    Inventor: Ivan Osorio
  • Patent number: 11826574
    Abstract: A medical device includes a motion sensor configured to produce a motion signal and a control circuit configured to sense atrial events from the motion signal. In some examples, the control circuit is configured to set a ventricular diastolic event window and set a threshold amplitude during the ventricular diastolic event window for sensing an atrial event in response to the motion signal crossing the threshold amplitude during the ventricular diastolic window. The control circuit may determine a maximum amplitude of the motion signal during the ventricular diastolic event window for multiple ventricular cycles and determine an amplitude metric based on at least a portion of the determined maximum amplitudes. The control circuit may determine a target value of the threshold amplitude based on at least the amplitude metric and adjust the threshold amplitude toward the target value.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: November 28, 2023
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Paul R. Solheim, Vincent E. Splett
  • Patent number: 11826127
    Abstract: A blood pump including a housing having an inlet element, the inlet element including a distal portion coupled to the housing and a proximal portion sized to be received within at least a portion of a heart of a patient and a rotor configured to rotate within the housing and impel blood from the heart. At least one pressure sensor is coupled to the proximal portion of the inlet element.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: November 28, 2023
    Assignee: HeartWare, Inc.
    Inventor: Fernando Casas
  • Patent number: 11819678
    Abstract: A blood pump comprises a pump casing a blood flow inlet and a blood flow outlet connected by a passage, and an impeller. The impeller comprises blades configured to convey blood from the blood flow inlet to the blood flow outlet, the impeller being supported in the pump casing by at least one contact-type bearing comprising a surface of the impeller facing a surface of the pump casing. At least one wash out channel extends through the impeller and is in fluid connection with the passage via a first opening and with the bearing via a second opening. The wash out channel is operatively associated with a secondary pump for pumping blood through the wash out channel towards the bearing. The secondary pump is formed at least partially by said at least one wash out channel extending through the impeller along a direction having at least one tangential directional component.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: November 21, 2023
    Assignee: ABIOMED EUROPE GMBH
    Inventors: Thorsten Siess, Walid Aboul-Hosn
  • Patent number: 11819315
    Abstract: A human condition detection device comprises a depth image-taking module for taking a depth image of a target area. A millimeter-wave radar module detects breaths or heartbeats in the target area to provide a signal. A thermal image-taking module takes a thermal image of the target area. A processor module determines whether a person is in the target area based on the depth image. The processor module determines whether there is any breath or heartbeat based on the signal if a person is in the target area. The processor module determines whether there is any abnormal vital sign of the person in the target area based on the signal and the thermal image if there is a breath or heartbeat in the target area. The processor module actuates the warning module to provide a warning if there is an abnormal vital sign of the person in the target area.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: November 21, 2023
    Assignee: GIGA-BYTE TECHNOLOGY CO., LTD.
    Inventors: Kuang-Hua Pai, Chih-Liang Chang, Jyun-Hong Lu, Mim-Nan Yeh, Hung-Ta Chen
  • Patent number: 11819697
    Abstract: A medical device includes a motion sensor configured to produce a motion signal and a control circuit configured to set sensing control parameters and sense atrial events from the motion signal during ventricular cycles according to the sensing control parameters. In some examples, the control circuit is configured to determine a feature of the motion signal for at least some ventricular cycles, determine a metric of the motion signal based on the determined features, and adjust at least one of the sensing control parameters based on the metric.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: November 21, 2023
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Keelia M. Escalante, Greggory R. Herr, Juliana E. Pronovici, Vincent E. Splett
  • Patent number: 11806536
    Abstract: System and methods are provided herein and include a HIS electrode configured to be located proximate to a HIS bundle and to at least partially define a HIS sensing vector. They system includes memory to store program instructions and cardiac activity (CA) signals for a series of beats utilizing a candidate sensing configuration. The candidate sensing configuration is defined by i) the HIS sensing vector and ii) a sensing channel that utilizes sensing circuitry configured to operate based on one or more sensing settings to detect near field and far field activity. The system includes one or more processors that, when executing the program instructions, are configured to analyze the CA signals to obtain an atrial (A) feature of interest (FOI) and a ventricular (V) FOI for the corresponding beats within the series of beats and identify a V-A FOI relation between the A FOIs and the V FOIs across the series of beats.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: November 7, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Aditya Goil, Xiaoyi Min, Wenwen Li, Yun Qiao, Jan O. Mangual-Soto, Carin Folman
  • Patent number: 11806062
    Abstract: A modular surgical system is disclosed includes a header module including a power supply, a first surgical module, a second surgical module, and a segmented power backplane. The first surgical module is arrangeable in a stack configuration with the header module and the second surgical module. The segmented power backplane includes a first backplane segment in the header module, a second backplane segment in the first surgical module, and a third backplane segment in the second surgical module. The second backplane segment is detachably coupled to the first backplane segment in the stack configuration and the third backplane segment is detachably coupled to the second backplane segment in the stack configuration. The first backplane segment, the second backplane segment, and the third backplane segment are configured to cooperate to transmit energy from the power supply to the second surgical module in the stack configuration.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: November 7, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, Brian J. Melewski
  • Patent number: 11794027
    Abstract: A medical apparatus provides resuscitative therapy to a patient. The apparatus includes an electrocardiogram (ECG) input, a defibrillation output configured to provide an electrical defibrillation shock treatment, and an applicator body configured to provide active compression decompression therapy to the patient's chest. The applicator body includes a rescuer end configured for hands of the rescuer to press and pull on the applicator body, a coupling surface configured to adhere to the patient's chest to provide active compression decompression therapy, a capacitor, and processor(s) configured to receive and analyze the ECG signal of the patient, determine whether the patient is in need of defibrillation, and administer the defibrillation shock treatment to the patient.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: October 24, 2023
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Keith Lurie, Anja Metzger, James R. Homuth