Patents Examined by Nusrat Quddus
  • Patent number: 11418128
    Abstract: A control apparatus is provided for controlling an electric power conversion apparatus. The electric power conversion apparatus includes a reactor and a drive switch and is configured to convert one of an AC voltage and a DC voltage into the other of the AC voltage and the DC voltage. The control apparatus is configured to: acquire a current detection value that is a detected value of reactor current flowing through the reactor; acquire the AC voltage; calculate, based on the AC voltage, a command value of the reactor current; set a correction value based on the AC voltage; calculate a post-correction current detection value by subtracting the correction value from the current detection value; and operate the drive switch through peak current mode control, thereby controlling the post-correction current detection value to be in agreement with the command value.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: August 16, 2022
    Assignee: DENSO CORPORATION
    Inventors: Seiji Iyasu, Yuji Hayashi, Yuichi Handa
  • Patent number: 11409312
    Abstract: One or more embodiments relate to a multi-phase voltage regulator with AVP or droop configured to implement a non-linear load line. According to certain aspects, the non-linear load line can have a non-linear or zero slope in a first current/voltage region and a constant non-zero slope in second current/voltage region. In embodiments, the non-linear or zero slope region can specify that for any value of output current in that region, the output voltage will be the same predetermined value. The non-zero slope region can specify that for any value of the output current in that region, output current will be multiplied by a constant non-zero droop resistance value.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: August 9, 2022
    Assignee: RENESAS ELECTRONICS AMERICA INC.
    Inventors: Travis Guthrie, Jim Toker, Shea Petricek
  • Patent number: 11394306
    Abstract: Provided is a dynamic control method that turns off a primary-side switching transistor when an output voltage exceeds an upper limit, and control the switching of a secondary-side synchronous rectification transistor with a fixed cycle and a fixed duty cycle. During the time that the synchronous rectification transistor is turned on, the energy of a load capacitor at the output end is extracted to the primary side, which causes the output voltage to drop rapidly and the overshoot voltage to decrease greatly.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: July 19, 2022
    Assignees: CSMC TECHNOLOGIES FAB2 CO., LTD., SOUTHEAST UNIVERSITY
    Inventors: Shen Xu, Wei Wang, Feng Lin, Boyong He, Wei Su, Weifeng Sun, Longxing Shi
  • Patent number: 11392156
    Abstract: An electronic circuit is disclosed. The electronic circuit includes a reference voltage generator, which includes a first candidate circuit configured to generate a first candidate reference voltage, a second candidate circuit configured to generate a second candidate reference voltage, and a selector circuit configured to select one of the first and second candidate reference voltages. The reference voltage generator also includes a third circuit configured to generate a power supply voltage based on the selected candidate reference voltage.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: July 19, 2022
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventors: Hassan Osama Elwan, Esmail Babakrpur Nalousi
  • Patent number: 11394192
    Abstract: A power supply delivery system is provided. The power supply delivery system includes a source module and a load module. The source module includes an input coupled to a Class 1 power source, plural outputs coupled to plural Class 2 cables, and circuitry coupled to the input and the plural outputs. The circuitry splits power received via the input into a plural Class 2 channels and conducts the plural Class 2 channels to the plurality of outputs. The load module includes plural inputs coupled to the plural Class 2 cables, an output coupled to a Class 1 load, and circuitry coupled to the plural inputs and the output. The circuitry combines the plurality of Class 2 channels received via the plural inputs into a single Class 1 channel and conducts the single Class 1 channel to the output.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: July 19, 2022
    Assignee: Gyrus Acmi, Inc.
    Inventors: Matthew Sargeant, Geophrey J. McComis
  • Patent number: 11387743
    Abstract: A power supply device is configured with input terminal (11) connectable to AC power supply (1) whose power supply frequency fluctuates, rectifier (12) that rectifies an AC voltage applied to power input terminal (11), frequency detector (13) that measures frequency of rectifier (12), current limiter (14) that regulates current output from rectifier (12), charge accumulation unit (15) that accumulates charge output from current limiter (14), current detector (16) that measures current output from charge accumulation unit (15), load connection terminal (17) connectable to load (20) that is operated by current output from current detector (16), and controller (18) that controls a regulated value of current limiter (14) and capacitance of charge accumulation unit (15) in accordance with fluctuation of the frequency measured by frequency detector (13) in such a manner that the current output from charge accumulation unit (15) becomes larger than current consumed by load (20) at a predetermined time.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: July 12, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Haruka Onishi, Teruhisa Murashima, Katsutoshi Sumida
  • Patent number: 11387649
    Abstract: An operating circuit is provided. A first N-type transistor determines whether to create an open circuit between a core circuit and a ground terminal according to the voltage level of a specific node. An electrostatic discharge (ESD) protection circuit is coupled between an input/output pad and the core circuit to prevent an ESD current from passing through the core circuit. The ESD protection circuit includes a detection circuit and a releasing element. The detection circuit determines whether there is an ESD event at the input/output pad and generates a first detection signal according to the detection of the ESD event at the input/output pad. The releasing element provides a release path according to the first detection signal to release the ESD current. A control circuit controls the voltage level of the specific node according to the first detection signal.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: July 12, 2022
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang Huang, Li-Fan Chen, Ching-Ho Li, Ting-You Lin, Chun-Chih Chen, Kai-Chieh Hsu, Chih-Hsuan Lin, Yu-Kai Wang
  • Patent number: 11378993
    Abstract: Examples are disclosed herein that relate to automatically limiting an output current of a voltage regulator circuit responsive to detecting that the voltage regulator is in a current overload mode. In one example, a voltage regulator circuit includes an amplifier stage and a current limiter stage electrically connected to an output of the amplifier stage. The amplifier stage is configured to output a DC voltage based on a reference voltage and feedback from an output voltage. The current limiter stage is configured to operate in a quiescent mode and an overload mode. In the quiescent mode, the current limiter stage is configured to operate as a buffer stage that forms a closed feedback loop to an input of the amplifier stage. In the overload mode, the current limiter stage is configured to act as a current source that clamps an output current to a designated current.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: July 5, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: Kenneth Colin Dyer
  • Patent number: 11381233
    Abstract: A protection circuit for a transistor switch coupled to a power supply rail operates to modulate a control voltage at a control terminal of the transistor switch. A first circuit detects an overload across the terminals of the switch with respect to a threshold to generate a signal which modulates the control voltage. A second circuit operates to adjust a value of the threshold in response to sensed variations in a supply voltage at the power supply rail.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: July 5, 2022
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Philippe Bienvenu, Antonio Calandra
  • Patent number: 11372435
    Abstract: A voltage regulator circuit includes a first voltage regulator having a first output voltage selection pin set and producing a first output voltage based on a first digital signal received at the first output voltage selection pin set, and a second voltage regulator having a second output voltage selection pin set and producing a second output voltage based on a second digital signal received at the second output voltage selection pin set. The first and second voltage regulators are operable in a voltage tracking mode with the output voltage of the second voltage regulator tracking the output voltage of the first voltage regulator when digital signals received at the selection pin sets have a same value. An overvoltage sensor detects overvoltage events at the first voltage regulator. Control circuitry selectively avoids operation in voltage tracking mode as a result of an overvoltage event detected at the first voltage regulator.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: June 28, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giovanni Luca Torrisi, Salvatore Abbisso, Cristiano Meroni
  • Patent number: 11368013
    Abstract: An overcurrent protection method is provided. The overcurrent protection method is applied to a USB with a PD function. The overcurrent protection method includes the steps of converting an input voltage into a first voltage to provide power to the first electronic device; determining whether the working current of the first electronic device is greater than a first default value; determining whether the working current of the first electronic device is greater than a second default value; in response to the working current being greater than the first default value, a first sensing signal is generated to disable a switch and to form an open circuit between the first electronic device and the second electronic device; and in response to the working current being greater than the second default value, conversion of the input voltage into the first voltage is stopped.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: June 21, 2022
    Assignee: Wistron Corp.
    Inventors: Yong Bo Li, Yong Qiang Li, Wen Long Yang, Jun Xin Qiu
  • Patent number: 11362510
    Abstract: A power supply device for eliminating overcurrent protection malfunctions includes a first transformer, a power switch element, an output stage circuit, a detection circuit, a feedback compensation circuit, a PWM (Pulse Width Modulation) IC (Integrated Circuit), a second transformer, and a control circuit. The first transformer generates an induced voltage according to an input voltage. The output stage circuit generates an output current according to the induced voltage. The detection circuit monitors the output current and generates a detection voltage according to the output current. The feedback compensation circuit includes a linear optical coupler and a voltage regulator. The feedback compensation circuit generates a coupling current. The second transformer generates a control voltage according to the coupling current. The control circuit selectively enables or disables the linear optical coupler and the voltage regulator according to the detection voltage and the control voltage.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: June 14, 2022
    Assignee: ACER INCORPORATED
    Inventor: Tzu-Tseng Chan
  • Patent number: 11353902
    Abstract: A power control semiconductor device includes: a voltage control transistor connected between an input terminal and an output terminal; a control circuit that controls the voltage control transistor in accordance with a voltage of the output terminal; and an external terminal that controls an output voltage externally. The control circuit includes: a first divider which has resistor elements connected in series to the output terminal and which divides the output voltage of the output terminal; a first error amplifier that outputs a voltage corresponding to a potential difference between a predetermined reference voltage and a voltage divided by the first divider; and an output voltage change circuit that changes the divided voltage in accordance with a voltage input to the external terminal to change the output voltage in accordance with the voltage of the external terminal.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: June 7, 2022
    Assignee: MITSUMI ELECTRIC CO., LTD.
    Inventors: Shinichiro Maki, Yoichi Takano, Katsuhiro Yokoyama
  • Patent number: 11343914
    Abstract: An electronic device is provided. The electronic device includes a conductive support member, a first circuit board connected to the conductive support member by a first capacitor, a second circuit board connected to the conductive support member by a second capacitor, a first conductive connection member electrically connecting the first circuit board and the second circuit board, and a first ground structure, at least a portion of the first ground structure being interposed between the first conductive connection member and the conductive support member. The ground structure includes a non-conductive layer physically contacting the conductive support member, and a conductive layer electrically connected to the first conductive connection member to form a capacitive coupling with the conductive support member.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: May 24, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wangik Son, Minho Kim, Sunghyun Kim, Eungwon Kim, Chanbeom Jeong
  • Patent number: 11340642
    Abstract: A low dropout regulator is disclosed. The low dropout regulator includes an amplifier, a transistor, and a selector. The transistor is coupled to the amplifier. The selector is coupled to the amplifier and the transistor. When a supply voltage value of the transistor is less than a supply voltage threshold value, a first path of the selector is selected and a first selector voltage value is transmitted by the selector to the transistor so as to fully conduct the transistor, and an output voltage value of the transistor is equal to the supply voltage value.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: May 24, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Hao-Huan Hsu, Lin-Chen Yen
  • Patent number: 11329565
    Abstract: The present invention provides regulation for an output voltage of a DC-DC voltage converter. The controlled variable provided to the regulator of the DC-DC voltage converter is in this case made up of a controlled variable from a voltage regulator and a further controlled variable from an initial controller. The controlled variable from the voltage regulator is in this case obtained directly from the comparison of the output voltage with a setpoint voltage. The controlled variable from the initial controller takes into consideration, inter alia, the input voltage of the DC-DC voltage converter, the value of the input DC voltage being able to be corrected such that the voltage regulator can be operated close to the zero point during steady-state operation. In this manner, faster and more precise regulation of the output voltage is obtained.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: May 10, 2022
    Assignee: Robert Bosch GmbH
    Inventor: Gholamabas Esteghlal
  • Patent number: 11329547
    Abstract: A primary controller applied to a primary side of a power converter includes a ripple cancellation circuit, a compensation voltage generation circuit, and a gate control signal generation circuit. The ripple cancellation circuit generates an adjustment according to a current flowing through a feedback pin of the primary controller during turning-on of a power switch of the primary side of the power converter. The compensation voltage generation circuit generates a compensation voltage of a compensation pin of the primary controller according to the adjustment, a reference voltage, and a feedback voltage of the feedback pin. The gate control signal generation circuit generates a gate control signal to the power switch to reduce an output voltage of a secondary side of the power converter according to the compensation voltage and a detection voltage.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: May 10, 2022
    Assignee: Leadtrend Technology Corp.
    Inventors: Hsin-Hung Lu, San-Yi Li
  • Patent number: 11320319
    Abstract: The present disclosure provides a circuit for generating a complimentary to absolute temperature (CTAT) voltage reference. The primary contributor to the voltage reference is first bipolar junction transistor, which is configured in diode mode, to produce the CTAT voltage. Such references include a non-linear component. A pair of bipolar junction transistors are coupled to the first bipolar junction transistor, and are configured to generate a delta base-emitter voltage. By coupling one of the pair to a proportional to absolute temperature current source, and the other to a current course which is substantially independent of absolute temperature, a further non-linear component is introduced, which is complimentary to the non-linear component introduced by the first bipolar junction transistor. The pair of bipolar transistors share a common emitter area size.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: May 3, 2022
    Assignee: Analog Devices International Unlimited Company
    Inventor: Viorel Bucur
  • Patent number: 11303219
    Abstract: A power conversion apparatus is provided in a rotary electric machine, converting a power between a DC power source and the rotary electric machine having a multiphase winding. The power conversion apparatus includes: a plurality of switching modules each having a switching element for performing switching to control a current direction of a current flowing from the DC power source to the winding; a plurality of capacitor modules each having a capacitor that suppresses high frequency oscillation occurring on the current due to the switching operation; a positive side conductor connected to a positive electrode of the DC power source; and a negative side conductor connected to a negative electrode of the DC power source.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: April 12, 2022
    Assignee: DENSO CORPORATION
    Inventors: Takashi Kashiwazaki, Tomohisa Sano
  • Patent number: 11281244
    Abstract: A voltage regulator having a current limiter for over-current protection is disclosed. The current limiter is powered by a current or currents derived from an output current. In a no-load condition, in which the output current is zero, the current or currents powering the current limiter may be zero. As the output current increases, however, the current or currents powering the current limiter may grow in proportion. Thus, the current limiter can have zero quiescent current in a no-load condition but may be powered to protect the voltage regulator in a high-current condition.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 22, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Jiri Matyscak