Patents Examined by Omar R Rojas
  • Patent number: 10488609
    Abstract: An intermittent-connection-type optical fiber ribbon in which a plurality of optical fiber core wires are disposed in parallel, and which includes: a connecting part where adjacent optical fiber core wires are connected; and a non-connecting part where adjacent optical fiber core wires are not connected, the connecting parts and the non-connecting parts are provided intermittently in a longitudinal direction, the non-connecting parts are not provided in the longitudinal direction between two the optical fiber core wires, the connecting part is recessed, and in a case where, in the longitudinal direction, a is length of the connecting part, b is length of a part where the non-connecting part between different optical fiber core wires overlap, c is length of the non-connecting part, and p is an interval of the connecting parts, c/a?1.5, b?50 mm, and (c/a)×p?200 mm are set.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: November 26, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Fumiaki Sato, Kenta Tsuchiya, Keisuke Okada, Yoshiaki Nagao, Nobuyuki Suzuki
  • Patent number: 10488589
    Abstract: An arrayed waveguide grating. The arrayed waveguide grating includes two star couplers and an array of waveguides connecting the star couplers. The T-shaped geometry of the array of waveguides makes possible an AWG with an arbitrarily large free spectral range in a compact form factor.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: November 26, 2019
    Assignee: Rockley Photonics Limited
    Inventor: Andrea Trita
  • Patent number: 10483019
    Abstract: The invention provides an ultra-flexible indoor accompanying photoelectric composite cable, and the cable comprises a plurality of power transmission components, optical fiber transmission components and structural strengthening components, which are covered by a highly flame-retardant outer protective layer. The power transmission component comprises a cable core which is a soft conductor and an insulating material layer wrapped around the cable core. The optical fiber transmission component is a tight tube optical fiber, and the power transmission components and the optical fiber transmission components are arranged in parallel inside the highly flame-retardant outer protective layer. The composite cable of the invention has very strong pressure resistance, stress resistance, and reciprocating resistance, good electrical and physical properties and more excellent environment resistant performance.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: November 19, 2019
    Assignee: JIANGSU ETERN COMPANY LIMITED
    Inventors: Feng Shen, Jianjun Zhang, Honglei Yang, Xiaohong Chen, Zifeng Yao, Danfeng Ling, Guijun Xia
  • Patent number: 10473856
    Abstract: Provided is an optical branching/coupling device in which optical transmission quality is improved by preventing a reduction in optical transmission quality, the reduction being due, for example, to an optical waveguide core affecting a light of another optical waveguide core in the vicinity of a joining section of the two optical waveguide cores. This optical branching/coupling device includes: a first optical waveguide that is provided extending from one end side to other end side; a second optical waveguide that is provided extending on a separate route from the one end side to the other end side, the other end side of the second optical waveguide being joined to the other end side of the first optical waveguide; and a cladding layer that covers the periphery of the first optical waveguide and the second optical waveguide, wherein the first and second optical waveguides comprise a cured product of a photocuring resin.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: November 12, 2019
    Assignees: ADAMANT NAMIKI PRECISION JEWEL CO., LTD., DENSO CORPORATION
    Inventors: Hiroyuki Fujiwara, Masaru Sasaki, Kaoru Torii, Ren Watanabe, Tadahisa Iikubo, Mitsuhiko Mizuno
  • Patent number: 10466400
    Abstract: A flexible lightguide having at least one fused fiberoptic end secured within an end fitting with a layer of cushioning material sandwiched between the fused fiberoptic end and end fitting. The layer of cushioning material accommodates the differences in thermal expansion and contraction of the fused fiberoptic end and end fitting to prevent damage to the fused fiberoptic end such as during multiple cycling in an autoclave. As one example, the layer of cushioning material may be provided by wrapping the fused fiberoptic end with PTFE tape, thread seal tape, or the like.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: November 5, 2019
    Assignee: SUNOPTIC TECHNOLOGIES LLC
    Inventor: Antonio Galarza
  • Patent number: 10466427
    Abstract: In an embodiment, an optoelectronic module includes a printed circuit board (PCB) and a lens block. The printed circuit board (PCB) includes at least one of an optical transmitting or receiving array. The lens block may be configured for directly coupling light between one of the optical transmitting or receiving array to optical fibers in an optical cable. A method may include directly coupling light between one of an optical transmitting or receiving array and a lens block, and further coupling the light through the lens block directly to an optical fiber of an optical cable externally coupled to the optoelectronic module.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: November 5, 2019
    Assignee: Finisar Corporation
    Inventors: William H. Wang, Shamei Shi, Huaping Peng, Ranran Zhang, Haijun An
  • Patent number: 10459170
    Abstract: A system (10) and method that facilitates the delivery of power and fiber communications together is provided. The system and method enables quick and easy connection of a hybrid cable (12) to telecommunication equipment. The system provides a sealed robust connection for both conductors (78, 80) and fibers (50) at a single location (56). It can be used to avoid the need for local powering of fiber based communication devices and networks.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: October 29, 2019
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Thierry Mike Declerck, Nicolas De Jaegere
  • Patent number: 10451816
    Abstract: A polishing sheet capable of reducing recesses formed at the core of the end surface of an optical fiber, and a manufacturing method for an optical fiber connector using the polishing sheet are provided. The method includes a step of the final polishing of an optical fiber ferrule assembly in which an optical fiber protrudes from the end surface of a ferrule, the protruding optical fiber having a recess in the tip end core. During the final polishing step, the optical fiber having the recess in the core is inserted into a flocked portion of a flocked polishing sheet. The optical fiber ferrule assembly and the flocked polishing sheet are disposed opposite one another and moved relatively to each other in order to polish the optical fiber. Fibers constituting the flocked portion have silica particles with an average particle diameter from 0.01 ?m to 0.1 ?m adhered to the surface.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: October 22, 2019
    Assignee: Mipox Corporation
    Inventor: Toshihiro Igawa
  • Patent number: 10451811
    Abstract: A fiber optic connector is disclosed that includes a plug body having a plug end and a connector core that mounts within the plug body. The connector core includes a ferrule subassembly including a ferrule, a ferrule hub that attaches to the ferrule, a spring holder and a connector spring. The ferrule sub-assembly is assembled with the connector spring pre-compressed to an initial compressed state prior to mounting the connector core within the connector body. The plug body and the core are configured such that the connector spring is moved from the initial compressed state to a final compressed state when the connector core is loaded in the plug body. In certain examples, tuning features can be integrated into the connector core.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 22, 2019
    Assignees: ADC TELECOMMUNICATIONS (SHANGHAI) DISTRIBUTION CO., LTD., COMMSCOPE CONNECTIVITY BELGIUM BVBA, COMMSCOPE ASIA HOLDINGS B.V.
    Inventors: Philippe Coenegracht, Jianfeng Jin, Liming Wang, Jacob Arie Elenbaas
  • Patent number: 10451799
    Abstract: An eyepiece waveguide for an augmented reality. The eyepiece waveguide can include a transparent substrate with an input coupler region, first and second orthogonal pupil expander (OPE) regions, and an exit pupil expander (EPE) region. The input coupler region can be positioned between the first and second OPE regions and can divide and re-direct an input light beam that is externally incident on the input coupler region into first and second guided light beams that propagate inside the substrate, with the first guided beam being directed toward the first OPE region and the second guided beam being directed toward the second OPE region. The first and second OPE regions can respectively divide the first and second guided beams into a plurality of replicated, spaced-apart beams. The EPE region can re-direct the replicated beams from both the first and second OPE regions such that they exit the substrate.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: October 22, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Robert Dale Tekolste, William Hudson Welch, Eric Browy, Victor Kai Liu, Samarth Bhargava
  • Patent number: 10429564
    Abstract: A flexible lightguide having at least one fused fiberoptic end secured within an end fitting with a layer of cushioning material sandwiched between the fused fiberoptic end and end fitting. The layer of cushioning material accommodates the differences in thermal expansion and contraction of the fused fiberoptic end and end fitting to prevent damage to the fused fiberoptic end such as during multiple cycling in an autoclave. As one example, the layer of cushioning material may be provided by wrapping the fused fiberoptic end with PTFE tape, thread seal tape, or the like.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: October 1, 2019
    Assignee: Sunoptic Technologies LLC
    Inventor: Antonio Galarza
  • Patent number: 10429596
    Abstract: A support assembly including a handle on a top surface of an optical connector, side clips removably coupled to opposite sides of the handle, such that a clamping force is applied to opposite sides of the optical connector to prevent movement between the handle and the optical connector, and a bottom clip removably coupled to a bottom of the handle, the bottom clip including a flange to capture a pull table extending from a rear of the optical connector. An Active Optical Cable (AOC) connector support assembly including a handle, side clips secured to opposite sides of the handle, such that a clamping force is applied to the opposite sides of the AOC connector to prevent movement between the handle and the AOC connector; and a bottom clip secured to a bottom of the handle, the bottom clip including a flange to secure the AOC connector.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: October 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jesus Ernesto Ibarra Hernandez, Oscar E. Flores Pantoja
  • Patent number: 10422949
    Abstract: An optical fiber includes a core, a depressed inner cladding surrounding the core, and an outer cladding surrounding the inner cladding, where a refractive index profile of the core includes an ? power distribution in which an index ? is 3.5 or more and 6 or less, a relative refractive index difference ?? of the inner cladding with respect to the adding is set such that an absolute value |??| thereof is 0.01% or more and 0.045% or less, a radius r1 of the core and an outer circumference radius r2 of the inner cladding are set such that a ratio r1/r2 thereof is 0.2 or more and 0.6 or less, a cable cutoff wavelength ?cc of 22 m is 1260 nm or less, and a mode field diameter MFD at a wavelength of 1310 nm is 8.6 ?m or more and 9.5 ?m or less.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 24, 2019
    Assignee: FUJIKURA LTD.
    Inventor: Ryo Maruyama
  • Patent number: 10422948
    Abstract: An optical fiber includes a core, a depressed layer surrounding the core, and a cladding surrounding the depressed layer, where a refractive index profile of the core is an ? power distribution in which an index ? is 3 or more and 6 or less, a relative refractive index difference ?? of the depressed layer with respect to the adding is set such that an absolute value |??| thereof is 0.01% or more and 0.05% or less, a radius r1 of the core and an outer circumference radius r2 of the depressed layer are set such that a ratio r1/r2 thereof is 0.2 or more and 0.5 or less, a cable cutoff wavelength ?cc of 22 m is 1260 nm or less, and a mode field diameter MFD at a wavelength of 1310 nm is 8.6 ?m or more and 9.5 ?m or less.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: September 24, 2019
    Assignee: FUJIKURA LTD.
    Inventor: Ryo Maruyama
  • Patent number: 10420460
    Abstract: An illumination probe may include a handle, an optic fiber, a tube, and an illumination source connector. The tube may include a tube distal end and a tube proximal end. The tube may include a tube aperture of the tube distal end. The tube proximal end may be disposed in the handle wherein the tube distal end extends out from a distal end of the handle. The optic fiber may include an optic fiber distal end and an optic fiber proximal end. The optic fiber may be disposed in the illumination source connector, the handle, and the tube wherein the optic fiber distal end is disposed in the tube. The tube aperture may be configured to modify a property of incident illumination light.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: September 24, 2019
    Assignee: KATALYST SURGICAL, LLC
    Inventor: Gregg D Scheller
  • Patent number: 10422962
    Abstract: The present disclosure relates to a fiber optic connection system that uses a slide clip to provide robust retention of a fiber optic connector within a mating fiber optic adapter. In certain examples, the fiber optic connector may be a hybrid connector that provides both electrical and optical connectivity.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: September 24, 2019
    Assignee: CommScope Connectivity Belgium BVBA
    Inventor: Philippe Coenegracht
  • Patent number: 10416393
    Abstract: Various embodiments are directed to a connector for coupling optical signals to a semiconductor device. In one embodiment, the connector includes a connector member having a recessed portion to arrange a plurality of waveguides formed side-by-side in a transverse direction. A backup member is arranged within the recessed portion interposing the plurality of waveguides between the connector member and the backup member. The recessed portion includes a plurality of ridges arranged in a staggered pattern relative to the plurality of waveguides for positioning the plurality of waveguides relative to the connector.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 17, 2019
    Assignee: International Business Machines Corporation
    Inventors: Tymon Barwicz, Yoichi Taira
  • Patent number: 10409014
    Abstract: A photonic integrated circuit (PIC) package includes a PIC die including electro-optical circuitry having an optical waveguide system therein and a V-groove fiber optic receptacle on a first surface thereof. The V-groove fiber optic receptacle positions an optical element, e.g., optical fiber(s), for optical coupling with the optical waveguide system. An optical element is operatively coupled to the optical waveguide system and positioned in the V-groove fiber optic receptacle. A magnetic force inducer (MFI) is positioned to forcibly direct the optical element into position in the V-groove fiber optic receptacle in response to application of a magnetic field from a direction opposite the V-groove fiber optic receptacle in the first surface. During assembly, a magnetic field may be applied to the MFI to generate the magnetic force. After adhering the optical element, the magnetic field may remain to allow the PIC package to be moved with more security.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: September 10, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Koushik Ramachandran, Benjamin V. Fasano
  • Patent number: 10386589
    Abstract: The present invention relates to a hybrid connector. The connector comprises an insulating housing having parallel rows of first and second terminals disposed in the housing. Each first and second terminal includes a terminal portion configured to make contact with an electrically conductive trace of a circuit board; and a mating portion configured to contact a terminal of a mating connector, the mating portions of the first terminals parallel to and facing the mating portions of the second terminals. The housing defines a cavity formed therein between the mating portions of the first and second terminals, wherein the cavity defining a cavity opening at an external surface of the housing for receiving light therefrom. An optical relay portion is disposed in the cavity, wherein the optical relay portion comprises at least one of an optical transceiver, an optical lens and an optical waveguide.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: August 20, 2019
    Assignee: 3M Innovation Properties Company
    Inventors: Terry L. Smith, Saujit Bandhu, YunLong Qiao, Chin Hua Lim, Barry J. Koch
  • Patent number: 10382838
    Abstract: Example management closures (110) enable incoming optical and/or electrical signals to be connected to one or more subscribers (109) via an electrical distribution cable (102). Termination connections within the management closure (110) are connected to active electronic equipment (131) for modifying and/or enhancing the incoming signals. However, the connections between the central office (101), the active electronic equipment (131), and a subscriber (109) need not be made until the subscriber requests a service upgrade. Accordingly, the closure (110) allows for simple and low cost installation of the closure (110) before upgraded service is needed.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: August 13, 2019
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Gerd Van Cauteren, Dirk Kempeneers, Jan Jozef De Rijck