Patents Examined by Omar R Rojas
  • Patent number: 10901164
    Abstract: Anchoring an input cable (190) at an input port (123, 223) of an enclosure (110) includes inserting the input cable (190) through an anchor member (151, 251) so that a cable jacket (191) terminates within the anchor member (151, 251) and at least one optical fiber (195) extends outwardly from the anchor member (151, 251). The anchor member (151, 251) is secured to the cable jacket (191) using the sheath (175). A cover (162, 260) is mounted to the anchor member (151, 251) to form a pass-through assembly (150, 250) defining an enclosed region. Material is injected into the enclosed region to fix strength members (197) and/or optical fibers (195) of the input cable (190) to the pass-through assembly (150, 250). The ruggedized pass-through assembly (150, 250) is disposed at a base (120, 220) of the enclosure (110).
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: January 26, 2021
    Inventors: Bart Mattie Claessens, Philippe Coenegracht
  • Patent number: 10900867
    Abstract: Methods and devices for coupling light bidirectionally into optical fiber are described. The disclosed devices can be manufactured inexpensively in one-piece and integrated in high speed optical transceivers with small form-factor. The described methods and devices enable OTDR functionality in such transceivers and are compatible with sensor components mounted on a wiring or circuit board.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: January 26, 2021
    Assignee: Ultra Communications, Inc.
    Inventors: Charles B. Kuznia, Joseph Farzin Ahadian, Sandra Skendzic
  • Patent number: 10895691
    Abstract: This invention discloses highly scalable and modular automated optical cross connect switch devices which exhibit low loss and scalability to high port counts. In particular, a device for the programmable interconnection of large numbers of optical fibers (100s-1000s) is provided, whereby a two-dimensional array of fiber optic connections is mapped in an ordered and rule-based fashion into a one-dimensional array with tensioned fiber optic circuit elements tracing substantially straight lines there between. Fiber optic elements are terminated in a stacked arrangement of flexible fiber optic circuit elements with a capacity to retain excess fiber lengths while maintaining an adequate bend radius. The combination of these elements partitions the switch volume into multiple independent, non-interfering zones, which retain their independence for arbitrary and unlimited numbers of reconfigurations.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: January 19, 2021
    Assignee: TELESCENT INC.
    Inventor: Anthony Stephen Kewitsch
  • Patent number: 10890723
    Abstract: An adapter with novel alignment features engages alignment features on a plug, providing general alignment of the ferrule holders and ferrules in the plug. After the plug engages the adapter, the ferrule holders engage a second set of alignment features in the adapter to provide fine alignment for the ferrules.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: January 12, 2021
    Assignee: US Conec, Ltd.
    Inventors: Hiep V. Nguyen, Darrell R. Childers, Michael E. Hughes, Jillcha Fekadu Wakjira, Joseph P. Howard
  • Patent number: 10884313
    Abstract: A nano-opto-electro-mechanical System (NOEMS) phase shifter is described. The NOEMS may include a multi-slot waveguide structure suspended in air. The multi-slot waveguide structure may include three or more waveguides separated from each other by slots. The width of the slots may be sufficiently small to support slot modes, where a substantial portion of the mode energy is within the slots. For example, the slots may have widths less than 200 nm or less than 100 nm. The multi-slot waveguide structure may be disposed in a trench formed though the upper cladding of a substrate. An undercut may be formed under the multi-slot waveguide structure to enable free motion of the structure. NOEMS phase modulators of the types described herein may be used in connection with photonic processing systems, telecom/datacom systems, analog systems, etc.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: January 5, 2021
    Assignee: Lightmatter, Inc.
    Inventor: Michael Gould
  • Patent number: 10884241
    Abstract: An optical element for a head mounted display (HMD) includes an illumination layer, an optical combiner, and an optically transparent layer. The illumination layer is configured to emit infrared light towards an eyeward side of the optical element. The optical combiner is configured to receive reflected infrared light that is reflected by an eye of a user and to direct the reflected infrared light towards an infrared camera. The optically transparent layer is disposed between the illumination layer and the eyeward side of the optical element. The optical element may further include one or both of a confinement layer and an infrared extractor. The confinement layer is disposed on a surface of the optically transparent layer to induce waveguiding of confined infrared light propagating within the optically transparent layer. The infrared extractor is disposed on a side-edge of the optically transparent layer to absorb or frustrate the confined infrared light.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: January 5, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Karol Constantine Hatzilias, Robin Sharma, Qi Zhang, Gregory Olegovic Andreev, Christopher Yuan-Ting Liao, Andrew John Ouderkirk
  • Patent number: 10880626
    Abstract: According to an embodiment, a connector device is connected to an electronic device. The connector device includes a signal processor, a switch, and a movable member. The signal processor processes a signal inputted from the electronic device or a signal outputted to the electronic device. The switch is ON when power supplied from the electronic device is used as a power supply for operating the signal processor. The movable member moves to a first position when the switch is ON and moves to a second position when the switch is OFF. The connector device is connectable to a power-supply-support electronic device and is not connectable to a power-supply-non-support electronic device when the movable member is at the first position. The connector device is connectable to the power-supply-support and power-supply-non-support electronic devices when the movable member is at the second position.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: December 29, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Nobuaki Suzuki
  • Patent number: 10871617
    Abstract: A device for attaching a non-ruggedized fiber optic connector to a ruggedized fiber optic adapter port may include a converter, a sealing shell and a sealing element. The converter may include a first end including a first mechanical interface compatible with the ruggedized fiber optic adapter port, a second end including a second mechanical interface, and a channel for receiving the non-ruggedized fiber optic connector. The sealing shell may include a first end including a third mechanical interface compatible with the second mechanical interface of the converter and a second end supporting a cable seal for forming a seal with a cable extending from the non-ruggedized fiber optic connector. The sealing element may provide sealing between the first end of the sealing shell and the second end of the converter.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: December 22, 2020
    Assignee: COMMSCOPE, INC. OF NORTH CAROLINA
    Inventor: Mark Emmett Alrutz
  • Patent number: 10866426
    Abstract: An electronic device may have a light source such as a laser light source. The light source may emit light into a waveguide. A phase grating may diffract the light that is emitted into the waveguide to produce diffracted light. The diffracted light may be oriented parallel to a surface normal of an angled edge of the waveguide and parallel to a surface normal of a microelectromechanical systems mirror element in a two-dimensional scanning microelectromechanical systems mirror that is coupled to the edge of the waveguide. A wave plate may be interposed between the mirror and the edge of the waveguide to change the polarization state of light reflected from the mirror element relative to incoming diffracted light from the phase grating. The phase grating may be configured so that the reflected light is not diffracted by the phase grating.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 15, 2020
    Assignee: Apple Inc.
    Inventors: Eric J. Hansotte, Byron R. Cocilovo, Se Baek Oh, Seyedeh Mahsa Kamali, Francesco Aieta
  • Patent number: 10859768
    Abstract: A waveguide apparatus, comprises: disposed in at least one layer: an input coupler; a first fold grating; a second fold grating; an output coupler; and a source of light optically coupled to the waveguide providing at least first and second polarizations of the light and at least one wavelength. The input coupler is configured to cause the first polarization light to travel along a first total internal reflection (TIR) path and the second polarization light to travel along a second TIR path.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: December 8, 2020
    Assignee: DigiLens Inc.
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern, Alastair John Grant
  • Patent number: 10852542
    Abstract: In some embodiments, a display device includes one or more waveguides having a vapor deposited light absorbing film on edges of the waveguide to mitigate ghost images. In some embodiments, the film is formed directly on the edge of the waveguide by a vapor deposition, such as an evaporative deposition process. In some embodiments, the light absorbing films may comprise carbon, for example carbon in the form of one or more allotropes of carbon, such as fullerenes, or black silicon.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: December 1, 2020
    Assignee: Magic Leap, Inc.
    Inventor: Mauro Melli
  • Patent number: 10838153
    Abstract: An independently-floated duplex ferrule connector is provided. A duplex ferrule component includes a duplex ferrule flange, having two ferrule sockets disposed on one end. A spring component comprising two ferrule couplers configured to mate with a retention feature of a ferrule. Each ferrule is independently-floated within one of the two ferrule sockets of the duplex ferrule flange such that each ferrule can move in a z-direction independently of the other ferrule.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 17, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, John Norton
  • Patent number: 10824047
    Abstract: A system for optical comb carrier envelope offset frequency control includes a mode-locked oscillator. The mode-locked oscillator produces an output beam using an input beam and one or more control signals. The output beam includes a controlled carrier envelope offset frequency. A beat note generator produces a beat note signal using a portion of the output beam. A control signal generator produces the one or more control signals to set the beat note signal by modulating the intensity of the input beam within the mode locked oscillator. Modulating the intensity comprises using a Mach-Zehnder intensity modulator or using an intensity modulated external laser to affect a gain medium within the mode-locked laser.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: November 3, 2020
    Assignee: AOSense, Inc.
    Inventors: Arman Cingoz, Dmitriy Churin, Jonathan Roslund, Miao Zhu
  • Patent number: 10823921
    Abstract: An interconnect package integrates a photonic die, an electronic die, and a switch ASIC into one package. At least some of the components in the electronic die, such as, for example, the serializer/deserializer circuits, transceivers, clocking circuitry, and/or control circuitry are integrated into the switch ASIC to produce an integrated switch ASIC. The photonic die is attached and electrically connected to the integrated switch ASIC.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: November 3, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Rabiul Islam, Stefan Rusu, Nick Samra
  • Patent number: 10816789
    Abstract: Some embodiments of a device comprise a light-guiding component; an optical-focusing component, wherein the light-guiding component and the optical-focusing component are aligned on an optical axis; and an optical-correction component that includes a reflecting surface and a correction surface.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 27, 2020
    Assignee: Canon U.S.A., Inc.
    Inventor: Badr Elmaanaoui
  • Patent number: 10816831
    Abstract: An optical modulator using an optical modulation element in which an optical waveguide and a plurality of electrodes for controlling light waves propagating through the optical waveguide are formed on a substrate, in which at least one stress relieving structure is provided on an upper surface of the electrode opposite to a surface of the substrate in order to relieve stress generated due to pressure applied at the time of wire-bonding of a metal wire.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: October 27, 2020
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Minoru Shinozaki, Toru Sugamata
  • Patent number: 10816725
    Abstract: Structures with waveguides in multiple levels and methods of fabricating a structure that includes waveguides in multiple levels. A waveguide crossing has a first waveguide and a second waveguide arranged to intersect the first waveguide. A third waveguide is displaced vertically from the waveguide crossing, The third waveguide includes a portion having an overlapping arrangement with a portion of the first waveguide. The overlapping portions of the first and third waveguides are configured to transfer optical signals between the first waveguide and the third waveguide.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 27, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yusheng Bian, Ajey Poovannummoottil Jacob, Abu Thomas
  • Patent number: 10802236
    Abstract: A telecommunications device includes a module that mounts within an interior of a housing. The housing has a door that latches closed. The module includes a module frame having a bulkhead that divides the interior of the housing into first and second regions. Fiber optic adapters are mounted to the bulkhead. First ports of the adapters are accessible at the first region of the housing interior and second ports are accessible at the second region of the housing interior. The module includes a removable cover for restricting access to the first region. The removable cover including a latch catch that interlocks with the door latch to secure the door in the closed position. The module includes a tray mounted to the module frame within the first region of the housing.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: October 13, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Scott C. Kowalczyk, Rodney C. Schoenfelder, John D. Moser
  • Patent number: 10788635
    Abstract: The present invention relates to a de-latching mechanism and optical module using the same. The de-latching mechanism includes a pull rod and a de-latching sheet or plate. The pull rod is configured to cause the de-latching sheet or plate to slide by rotating or sliding, thereby de-latch the optical module. The present invention provides a de-latching mechanism and optical module using the same with a simple structure and various convenient ways to de-latch the optical module, which can use a smaller rotational angle, simple condition(s) for de-latching and less de-latching environment support.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: September 29, 2020
    Assignee: Source Photonics (Chengdu) Company, Ltd.
    Inventors: Yizhi Zeng, Honggi Wu, Ximin Chen, Deke Li, Jinlin Wang
  • Patent number: 10788623
    Abstract: An optical device including: a waveguide, including a core having a refractive index, for guiding a quasi monochromatic light radiation, of a central wavelength, in a first direction and transmitting the radiation through an exit facet of the waveguide to the external environment according to a transmission coefficient, the exit facet being substantially perpendicular to the first direction, a filter blade, for example an air blade, disposed in the waveguide, parallel to the exit facet and at a first non-zero distance from the exit facet, the filter blade having, in the first direction, a first thickness, the first distance and the first thickness configured so that the transmission coefficient of the waveguide is equal to a first transmission coefficient at the central wavelength.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: September 29, 2020
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Salim Boutami