Patents Examined by Patricia L. Hailey
  • Patent number: 11370976
    Abstract: Process for hydrogenating at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650° C., said process being performed in the gas phase or in the liquid phase at a temperature of between 30 and 350° C., at a pressure of between 0.1 and 20 MPa, at a hydrogen/(aromatic compounds to be hydrogenated) mole ratio of between 0.1 and 10 and at an hourly space velocity (HSV) of between 0.05 and 50 h?1, in the presence of a catalyst comprising an active phase comprising nickel, said active phase not comprising any group VIB metal, and a support comprising an amorphous mesoporous alumina having a connectivity (Z) of greater than 2.7, the connectivity being determined from the nitrogen adsorption/desorption isotherms.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: June 28, 2022
    Assignee: IFP Energies Nouvelles
    Inventors: Malika Boualleg, Anne-Claire Dubreuil
  • Patent number: 11358125
    Abstract: The present invention discloses a bismuth oxide (Bi2O3)/bismuth subcarbonate ((BiO)2CO3)/bismuth molybdate (Bi2MoO6) composite photocatalyst, including a Bi2MoO6 photocatalyst, where Bi2O3 and (BiO)2CO3 nanosheets are introduced to a surface of the Bi2MoO6 through addition of Na2CO3 and roasting. The present invention also discloses a preparation method of the Bi2O3/(BiO)2CO3/Bi2MoO6 composite photocatalyst which is specifically implemented by the following steps: step 1: preparing a Bi2MoO6 photocatalyst; step 2: introducing Bi2O3 and (BiO)2CO3 nanosheets to a surface of the Bi2MoO6 photocatalyst obtained in step 1 through addition of Na2CO3 and roasting to obtain the Bi2O3/(BiO)2CO3/Bi2MoO6 composite photocatalyst. The photocatalyst of the present invention has no agglomeration, a wide responsive range of visible light, a significantly improved catalytic activity compared with a Bi2MoO6 alone, and excellent reusability.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: June 14, 2022
    Assignee: YAN'AN UNIVERSITY
    Inventors: Feng Fu, Huidong Shen, Danjun Wang, Yanzhong Zhen, Wenwen Xue, Long Yan
  • Patent number: 11358132
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: June 14, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 11358131
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: June 14, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 11351532
    Abstract: The present invention provides a preparation method of a photocatalytic composite material, and relates to the field of catalyst technologies. The preparation method provided in the present invention includes the following steps: (1) subjecting plant leaves to soaking pretreatment to obtain template biomass; (2) mixing a molybdenum source-sulfur source aqueous solution with the template biomass obtained in step (1) and conducting impregnation to obtain a composite material precursor; and (3) calcining the composite material precursor obtained in step (2) to obtain the photocatalytic composite material. The photocatalytic composite material in the present invention includes acicular molybdenum sulfide and biomass carbon, the acicular molybdenum sulfide is loaded to a surface of the flake carbon, the mass content of the biomass carbon is 70% to 90%, and the mass content of the molybdenum sulfide is 10% to 30%.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: June 7, 2022
    Assignee: Suzhou University Of Science And Technology
    Inventors: Zhigang Chen, Feng Chen, Junchao Qian, Chengbao Liu, Chencheng Wang
  • Patent number: 11351523
    Abstract: A process for regenerating a deactivated vanadium-titanium-phosphorous catalyst which has been used in the production of unsaturated carboxylic acid is disclosed. The process comprises contacting the deactivated vanadium-titanium-phosphorous catalyst with a regeneration stream comprising steam as a regeneration agent at a temperature which is the same or similar to that used in the production of the unsaturated carboxylic acid.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: June 7, 2022
    Assignee: Johnson Matthey Davy Technologies Limited
    Inventors: Michael Bainbridge, Javad Tabatabaei
  • Patent number: 11344867
    Abstract: A carbon catalyst has: a carbon structure that exhibits a nitrogen desorption temperature range from 800° C.-1,000° C. of 0.75×10?5 mol/g or more or a nitrogen desorption amount in the range from 600° C. to 1,000° C. of 1.20×10?5 mol/g or more in a temperature programmed desorption method including measuring nitrogen desorption amount temperature range from 600° C.-1,000° C.; a carbon structure exhibits a zeta potential isoelectric point of pH 9.2 or more; or a carbon structure exhibits a ratio of an intensity of a first nitrogen peak within a range of a binding energy of 398.0±1.0 eV, to an intensity of a second nitrogen peak having a peak top within a range of a binding energy of 400.5±1.0 eV, of 0.620 or more, the first and second nitrogen peaks obtained by separating a peak derived from a 1s orbital of a nitrogen atom in a photoelectron spectrum obtained by X-ray photoelectron spectroscopy.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: May 31, 2022
    Assignee: NISSHINBO HOLDINGS INC.
    Inventors: Yuji Kubota, Takeaki Kishimoto, Kumi Narizuka, Tetsutaro Sato
  • Patent number: 11338271
    Abstract: A porous carbon material including a porous carbon material having a specific resistance value of 30 ?cm or less at a packing density of 0.3 g/cc, wherein a mesopore volume (cm3/g) of the porous carbon material as measured by the BJH method is 0.5 cm3/g or greater.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: May 24, 2022
    Assignee: Dexerials Corporation
    Inventors: Katsuya Tanba, Yoshiharu Okuda, Teiko Kuroda
  • Patent number: 11338275
    Abstract: Methods and catalysts for producing benzyl alcohol and homologues thereof from short-chain alcohols by catalytic conversion are disclosed. The methods and catalysts develop a new route for benzyl alcohols and ethyl benzyl alcohols production through cross coupling-aromatization reaction using short-chain alcohols as reactants and provide corresponding catalysts required for the above catalytic reaction. It is emphasized on a single bed catalyst to produce benzyl alcohol and its homologues in one step, and is expected to become an important alternative route for the production of benzyl alcohol and its homologues. A route and corresponding catalysts for directly producing benzyl alcohol and ethyl benzyl alcohol through coupling-aromatization reaction starting from low carbon alcohols are provided. The selectivity of the benzyl alcohol is up to 35%, and the total selectivity of the ethyl benzyl alcohol is up to 11%.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 24, 2022
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Anhui Lu, Wencui Li, Baichuan Zhou, Qingnan Wang
  • Patent number: 11338276
    Abstract: A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane and a preparation and regeneration method thereof are disclosed in the present application. A catalyst for preparing chloroethylene by cracking 1,2-dichloroethane includes a carrier and a nitrogen-containing carbon as an active component of the catalyst with the nitrogen-containing carbon being loaded on the carrier. The method for preparing the catalyst includes: supporting an organic matter on an inorganic porous carrier and then performing a carbonization-nitridation process by pyrolysis in an atmosphere containing the nitrogen-containing compound. The method for regenerating the catalyst includes: calcinating the catalyst with deactivated carbon deposit in an oxidizing atmosphere to remove all the carbonaceous portions on the surface, and repeating the above preparation process of the catalyst.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: May 24, 2022
    Assignees: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, FORMOSA PLASTICS CORPORATION
    Inventors: Jinming Xu, Sisi Fan, Yanqiang Huang, Fao Zhang, Chin Lien Huang, Wan Tun Hung, Tu Cheng Chen, Chien Hui Wu, Ya Wen Cheng, Ming Hsien Wen, Chao Chin Chang, Tsao Cheng Huang
  • Patent number: 11338272
    Abstract: The present disclosure relates to a catalyst for directly decomposing urea, a method for preparing the same and a system for decomposing urea including the same, whereby the efficiency of decomposing urea to ammonia may be improved while preventing the formation of a byproduct such as biuret at temperatures of 200° C. or below by controlling the oxygen composition of the catalyst including titania and ceria.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: May 24, 2022
    Assignee: DAEYOUNG C&E
    Inventors: Sei Youn Noh, Nam Ha Kim, Byung Han Seo, Hyo Sang Lee, Myoung Jin Kha, Jong Min Won, Gyeong Ryun Choi
  • Patent number: 11331651
    Abstract: The present invention relates to a catalyst comprising a carrier substrate of the length L extending between substrate ends a and b and three washcoat zones A, B and C wherein washcoat zone A comprises one or more first platinum group metals and extends starting from substrate end a over a part of the length L, washcoat zone C comprises one or more first platinum group metals and extends starting from substrate end b over a part of the length L, and washcoat zone B comprises the same components as washcoat zone A and in addition, one or more second platinum group metals and extends between washcoat zones A and C, wherein L=LA+LB+LC, wherein LA is the length of washcoat zone A, LB is the length of substrate length B and LC is the length of substrate length C.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 17, 2022
    Assignee: UMICORE AG & CO. KG
    Inventors: Ryan J. Andersen, John G. Nunan, Curt M. Ellis, Geon Seog Son
  • Patent number: 11325114
    Abstract: Methods for forming an interconnected network of solid material and pores, with metal residing only at the air/solid interface of the interconnected network structure are described. In certain embodiments, nanoparticle decorated sacrificial particles can be used as sacrificial templates for the formation of a porous structure having an interconnected network of solid material and interconnected network of pores. The nanoparticles reside predominantly at the air/solid interface and allow further growth and accessibility of the nanoparticles at defined positions of the interconnected structure. SEM and TEM measurements reveal the formation of 3D interconnected porous structures with nanoparticles residing predominantly at the air/solid interface of the interconnected structure.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 10, 2022
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joanna Aizenberg, Tanya Shirman, Nicolas Vogel, Mathias Kolle, Michael Aizenberg
  • Patent number: 11318453
    Abstract: A catalyst having at least one Group VIB metal component, at least one Group VIII metal component, a phosphorus component, and a boron-containing carrier component. The amount of the phosphorus component is at least 1 wt %, expressed as an oxide (P2O5) and based on the total weight of the catalyst, and the amount of boron content is in the range of about 1 to about 13 wt %, expressed as an oxide (B2O3) and based on the total weight of the catalyst. In one embodiment of the invention, the boron-containing carrier component is a product of a co-extrusion of at least a carrier and a boron source. A method for producing the catalyst and its use for hydrotreating a hydrocarbon feed are also described.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: May 3, 2022
    Assignee: Albemarle Catalysts Company B.V.
    Inventors: Marcel Adriaan Jansen, Henk Jan Tromp, Bob Gerardus Oogjen, Sander Hendrikus Lambertus Thoonen, Jan Nieman, Wilhelmus Clemens Jozef Veerman
  • Patent number: 11318449
    Abstract: An acid-resistant alloy catalyst, comprising nickel, one or more rare earth element, tin, aluminum and molybdenum. The catalyst is cheap and stable, does not need a carrier, can be stably applied in industrial continuous production, and can lower the production cost.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: May 3, 2022
    Assignees: Changchun Meihe Science and Technology Development Co., LTD, The Coca-Cola Company
    Inventors: Jing Liu, Hongbin Qi, Haiyu Ren
  • Patent number: 11318446
    Abstract: An activated carbon/palladium-gallium (Pd—Ga) liquid alloy composite catalyst, including a support and an active component supported on the support. The support is acid washed activated carbon. The active component is Pd—Ga liquid alloy. In the present invention, the active component Pd—Ga, present in the form of liquid alloy, forms a self-protective oxide layer. This protects acetylene from secondary reactions on the surface of the catalyst, inhibits or reduces acetylene to deeply hydrogenate to form ethane, thereby increasing ethylene selectivity. The present invention further provides a preparation method of the catalyst, where the catalyst of the present invention is prepared by immersion. The preparation method is simple and easy to operate. When the activated carbon/Pd—Ga liquid alloy composite catalyst provided by the present invention is used for acetylene hydrogenation to prepare ethylene, conversion rate of acetylene is as high as 99.8%, while the ethylene selectivity is as high as 98.9%.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: May 3, 2022
    Assignee: TAIZHOU UNIVERSITY
    Inventors: Rongrong Li, Deman Han
  • Patent number: 11318434
    Abstract: A catalytic bed for the partial oxidation of n-butane to maleic anhydride which comprises at least one first catalytic layer and at least one second catalytic layer, wherein each catalytic layer consists of a vanadium and phosphorus mixed oxide (VPO) catalyst and only the catalyst of the second catalytic layer further comprises tungsten, and wherein the second catalytic layer constitutes 25% to 45% of the total length of the catalytic bed and is arranged consecutively after the first catalytic layer along the direction in which the mixture of gases comprising the oxidation reagents flows. The present invention also relates to a process for producing maleic anhydride by partial oxidation of n-butane which uses the catalytic bed.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: May 3, 2022
    Assignee: POLYNT S.P.A.
    Inventors: Silvia Luciani, Federico Folco, Mario Novelli, Stefano Gori
  • Patent number: 11311939
    Abstract: A method for preparing copper-solver and copper-gold porous microsheets with specific pore sizes, the method including the steps of providing a solution of copper microsheets and adding a silver or gold solution under controlled temperature, the reaction conditions can be changed to determine pore sizes.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: April 26, 2022
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Gugang Chen, Shutang Chen
  • Patent number: 11312625
    Abstract: To provide a hydrogen sulfide mixture hardly corroding metals. The hydrogen sulfide mixture contains hydrogen sulfide and water. The hydrogen sulfide mixture is filled into a filling container so that at least one part of the hydrogen sulfide mixture is liquid and the moisture concentration of a gaseous phase is 0.001 mol ppm or more and less than 75 mol ppm.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: April 26, 2022
    Assignee: SHOWA DENKO K.K
    Inventors: Yosuke Tanimoto, Yasuyuki Hoshino
  • Patent number: 11306050
    Abstract: Disclosed are methods for preparing cannabigerol (CBG) or a CBG analog, embodiments of the method comprising providing a compound (I); combining the compound (I) with geraniol and a solvent to form a reaction mixture; and combining the reaction mixture with an acid catalyst to form a product mixture comprising the CBG or the CBG homolog. The method may further comprise separating the CBG or the CBG analog from the product mixture and may further comprise purifying the CBG or CBG analog. Methods for preparing cannabigerolic acid (CBGA) or a cannabigerolic acid analog are also disclosed. The present disclosure also provides highly purity CBG, CBGA, and analogs thereof.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: April 19, 2022
    Inventors: Daniel Brumar, Mahmood Azizpour Fard, Ben Geiling, Mohammadmehdi Haghdoost Manjili