Patents Examined by Patrick Salce
  • Patent number: 8035949
    Abstract: A semiconductor device applies a hold voltage Vhold to an upper electrode of an electrostatic actuator and a ground voltage to a lower electrode. After the semiconductor device sets the voltage of the lower electrode to a test voltage Vtest, it eliminates the hold voltage Vhold from the upper electrode and places the voltage of the upper electrode in a high impedance state. The potential difference between the upper electrode and the lower electrode is set to Vhold?Vtest=Vmon. Thereafter, the voltage of the lower electrode is returned to the ground voltage. Whether the electrostatic actuator is placed in an open state or in a closed state is determined by measuring the capacitance between the electrodes based on the amount of drop of the voltage of the upper electrode due to capacitance coupling at the time.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: October 11, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shinji Miyano
  • Patent number: 8035938
    Abstract: Active current surge limiters (100) and methods of use are disclosed. One exemplary system, among others, comprises a current limiter (140), including an interface configured to be connected between a power supply (110) and a load (120); a disturbance sensor (150), configured to monitor the power supply for a disturbance during operation of the load; and an activator (160), configured to receive a control signal (215) from the disturbance sensor (150) and to activate the current limiter (140) based on the control signal.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: October 11, 2011
    Assignee: Georgia Tech Research Corporation
    Inventor: Deepakraj Malhar Divan
  • Patent number: 8031450
    Abstract: A power supply control circuit includes a control circuit that controls an output transistor to be rendered conductive by forming a second electrical path between a second power supply line and a control terminal of the output transistor when a power supply voltage is applied in a reverse direction between first and second power supply lines, and that controls a second electrical path to be electrically disconnected when the power supply voltage is applied in a forward direction between the first and second power supply lines.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 4, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Akihiro Nakahara
  • Patent number: 8027130
    Abstract: A fan system is electrically connected to a power source, and the fan system includes a power reverse protection apparatus, a voltage regulator, a driver, and a fan. The power reverse protection apparatus, electrically connected to the power source, includes a voltage regulator switch and an activating device. The voltage regulator switch receives an input signal and outputs a first output signal according to the input signal. The activating device is electrically connected to the power source and the voltage regulator switch for receiving the input signal and the first output signal, respectively. The activating device outputs a second output signal to the fan according to the first output signal. The voltage regulator is electrically connected to the power source for receiving the input signal from the power source and outputting a regulating signal according to the input signal.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: September 27, 2011
    Assignee: Delta Electronics, Inc.
    Inventors: Wei-Long Tai, Chien-Hua Chen
  • Patent number: 8023235
    Abstract: An electrical fault detection device for use in a branch of a power circuit that utilizes signals from an AC line current sensor coupled to an electrical distribution line having a primary and neutral lines, a line high-frequency sensor coupled to the electrical distribution line, a differential current sensor coupled to the primary and neutral lines, and a ground fault current sensor coupled to the primary and neutral lines. A signal conditioner receives the signals outputted by AC current line current sensor, the line high frequency sensor, the differential current sensor and the ground fault current sensor and generates a signal indicative of the load current associated with a branch of the power circuit. Output of the signal conditioner is sampled and processed by a processing resource. The processing resource has stored therein data representing a plurality of time-versus-current curves that define a plurality of regions in which tripping may or may not occur.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: September 20, 2011
    Assignee: Siemens Industry, Inc.
    Inventors: Mario Bilac, Carlos Restrepo, Hugh T. Kinsel, Amit Nayak
  • Patent number: 8009394
    Abstract: A leak current breaker is provided which includes a detector (10) to detect a leakage current from electric lines, a first removing unit (12) to convert the detected leakage current into a voltage and a voltage detector (14) to detect a voltage developed in electric lines A under testing, a second removing unit (16) to remove a harmonic component included in the voltage, a phase contrast detector (20) to detect a phase contrast from a signal waveform having the harmonic component removed, a frequency calculator (21) to calculate a frequency occurring on electric lines A on the basis of the signal waveform of the voltage having the harmonic component removed by the second removing unit (16), a phase angle calculator (22) to calculate a phase angle of the leakage current flowing through the electric lines A on the basis of the phase contrast and frequency, a root-mean-square value calculator (24) to calculate a root-mean-square value of the voltage having the harmonic component removed by the first removing uni
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: August 30, 2011
    Inventors: Toyotsugu Atoji, Kiyoshi Miyazawa
  • Patent number: 8004805
    Abstract: A semiconductor integrated circuit includes an external pad, a ground line, a first protection circuit between the external pad and the ground line, and a second protection circuit between the external pad and the ground line. The second protection circuit is formed by a first protection element, a second protection element, and a resistor. With this structure, the resistance value of the resistor is set to an arbitrary value, so that an unnecessary current which would be generated at the time of power-off of the LSI can be decreased to a value which does not deteriorate the reliability of the LSI.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: August 23, 2011
    Assignee: Panasonic Corporation
    Inventors: Katsuya Arai, Toshihiro Kogami, Hiroaki Yabu
  • Patent number: 8000079
    Abstract: A relay driving module is adapted for driving a latching relay, and includes a current limiting circuit, an energy storage component, and a switch circuit. The current limiting circuit is adapted for receiving a power signal, and draws an amount of current that does not exceed a current threshold from the power signal. The energy storage component is coupled electrically to the current limiting circuit for receiving the current from the current limiting circuit so as to store energy therein. The switch circuit is coupled electrically to the energy storage component, and is controlled by a control signal to selectively enable the energy storage component to discharge the energy stored therein so as to drive the latching relay.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: August 16, 2011
    Assignees: Silitek Electronics (Guangzhou) Co., Ltd., Lite-On Technology Corp.
    Inventor: Shun-Chang Lin
  • Patent number: 7990662
    Abstract: A localized area is at least partially contained within a perimeter of a shield ring formed by a closed superconducting current path of a material that is superconductive below a critical temperature. The shield ring is at least partially within a perimeter of a compensation coil that is coupled to a current source. One or more measurement devices are responsive to magnetic fields in the vicinity of the localized area, allowing compensation by controlling current to the compensation coil. A heater can raise temperature of the shield ring out of a superconducting condition.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: August 2, 2011
    Assignee: D-Wave Systems Inc.
    Inventors: Andrew J. Berkley, Sergey V. Uchaykin, Thomas F. W. Mahon
  • Patent number: 7986504
    Abstract: A power supply cell for distributing power supplied from a first voltage supply to an integrated circuit is disclosed.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: July 26, 2011
    Assignee: ARM Limited
    Inventors: Mikael Rien, Fabrice Blanc, Nidhir Kumar
  • Patent number: 7983014
    Abstract: The disconnector of the present invention comprises: a current transformer that detects a current flowing through electric wires; a rectifying part that rectifies the current outputted from the current transformer; a charging part that charges the current outputted from the rectifying part; a switching part that disconnects the electric wires upon driving; and a trigger part that drives the switching part when the charge stored in the charging part becomes a predetermined drive area. In this regard, the drive area is set larger than the charge that can be stored in the charging part by a lightning surge current. The disconnector of the present invention and the overvoltage protectors may be combined to constitute the overvoltage protection device.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: July 19, 2011
    Inventors: Masao Shibayama, Hitoshi Kijima
  • Patent number: 7978449
    Abstract: An integrated electrostatic discharge (ESD) protection circuitry for a signal electrode. Coupled in shunt between the signal electrode and the positive and negative power supply electrodes are opposing sets of multiple diodes coupled in series. Each set includes a diode across which is applied a nominal reverse bias voltage. These opposing reverse bias voltages are maintained at substantially constant predetermined nominal magnitudes in relation to the voltage at the signal electrode, thereby ensuring minimal leakage current via the signal electrode over the full dynamic range of the signal.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: July 12, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Kenneth J. Carroll, Saurabh Vats
  • Patent number: 7974050
    Abstract: An active loading-reduction device is provided for a circuit. The circuit has functional circuitry coupled to a terminal to receive an alternating voltage. The circuit also has an electrostatic discharge protector that is coupled to the terminal. The active loading-reduction device includes active circuitry that is adapted to be coupled to a power supply to provide a reactance to counteract a reactance provided by the electrostatic discharge protector at the terminal of the circuit.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: July 5, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Bo-Shih Huang, Ming-Dou Ker
  • Patent number: 7974056
    Abstract: A semiconductor device which can achieve high breakdown voltage and high ESD tolerance of a current drive output terminal at the same time, and can quicken the response speed of a current flowing through the current drive output terminal. The inventive semiconductor device is provided, between the current drive output terminal and a first transistor or a low breakdown voltage element, with a second transistor having a breakdown voltage higher than that of the first transistor or that of the low breakdown voltage element. Furthermore, the inventive semiconductor device is provided with a diode having an anode connected with a path between the first transistor or the low breakdown voltage element and the second transistor, and a cathode connected with an ESD protection circuit.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: July 5, 2011
    Assignee: Panasonic Corporation
    Inventor: Shinichiro Kataoka
  • Patent number: 7969694
    Abstract: An embodiment of the invention relates to a switch-mode power converter including an inductor and an external rectifying diode. A series arrangement of a resistor and a switch are coupled in parallel with the external rectifying diode. The resistor and the switch enable continuous conduction mode, even at substantially no output current. A comparator senses a current level in the resistor. When the current level crosses a threshold level, the power converter is shut down. The current level is sensed with a second resistor coupled to a current source to produce a current sensing arrangement dependent on a ratio of resistances. Advantageously, the current level is sensed with clamp circuits coupled to the comparator, each clamp circuit including a series circuit arrangement of a field-effect transistor with a gate coupled to a voltage source.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: June 28, 2011
    Assignee: Infineon Technologies AG
    Inventors: Olivier Trescases, Derek Bernardon
  • Patent number: 7965481
    Abstract: A high voltage tolerance circuit includes a first transistor, a second transistor, a third transistor, and a latch-up device. The first transistor and the second transistor are controlled by a control signal. The gate of the third transistor is coupled to a ground through the first transistor. The gate of the third transistor is coupled to an I/O pad through the second transistor. The third transistor is coupled between a power supply and a node. The latch-up device is coupled between the node and the I/O pad.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: June 21, 2011
    Assignee: eMemory Technology Inc.
    Inventors: Shao-Chang Huang, Wei-Yao Lin, Tsung-Mu Lai
  • Patent number: 7965479
    Abstract: An over-current and over-voltage protection assembly apparatus including an over-current protection (OCP) device and an over-voltage protection (OVP) device is provided. One end of the OCP device is electrically connected to a first connection point, and the other end is electrically connected to a second connection point. One end of the OVP device is electrically connected to a third connection point, and the other end is electrically connected to the second connection point. The second connection point is a common point. The OCP device and the OVP device are modularized and integrated to an assembly. The first, second, and third connection points are connected to an external circuit to be protected, such that the OCP device is connected in series to the circuit to be protected, and the OVP device is connected in parallel to the circuit to be protected.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: June 21, 2011
    Assignee: Polytronics Technology Corporation
    Inventors: Pao Hsuan Chen, Ching Han Yu, Tong Cheng Tsai
  • Patent number: 7952842
    Abstract: A circuit breaker includes separable contacts; a load conductor; a neutral conductor; and an operating mechanism structured to open and close the separable contacts. An arc fault trip circuit cooperates with the operating mechanism and trips open the separable contacts responsive to detection of an arc fault condition associated with current flowing through the separable contacts. A ground fault trip circuit cooperates with the operating mechanism and is structured to trip open the separable contacts responsive to detection of a ground fault condition associated with current flowing through the separable contacts, the load conductor and the neutral conductor. The arc fault trip circuit includes an integration capacitor, and the ground fault trip circuit includes an output to the integration capacitor.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: May 31, 2011
    Assignee: Eaton Corporation
    Inventor: Joseph C. Engel
  • Patent number: 7948730
    Abstract: A fast turn-off and fast turn-on circuit (10) providing at least one power source (12, 20), at least one switching device (14, 22), a coil (16), and at least a first voltage control device (18). The at least one switching device (14, 22) is connected to the at least one power source (12, 20) for selectively connecting the at least one power source (12, 20) to portions of the circuit (10). An electrical current from at least one power source (12, 20) charges the coil (16) and creates an electromagnetic field when the at least one switching device (14, 22) is in a closed position and connects the at least one power source (12, 20) with the coil (16). The first voltage control device (18) limits a voltage in the circuit (10) when the electromagnetic field decays.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: May 24, 2011
    Assignee: BorgWarner, Inc.
    Inventors: Gary Oliveira, Todd Ferguson
  • Patent number: 7944673
    Abstract: A coloring apparatus 1 includes a coloring nozzle 31 for spouting a coloring material, a signal generator 53, and a controller 19. The coloring nozzle 31 includes an electromagnetic valve 51. The signal generator 53 outputs signals for spouting the coloring material from the coloring nozzle 31 to both a CPU 62 of the controller 19 and a driving circuit 64. The CPU 62 outputs a signal for keeping the electromagnetic valve 51 open to the driving circuit 64 when a frequency of the signals from the signal generator 53 is higher than a specific frequency. When at least one of the signals from the CPU 62 and the signal generator 53 is inputted, the driving circuit 64 applies a spike voltage A and then applies a hold voltage B to a coil 40. While at least one of the signals from the CPU 62 and the signal generator 53 is inputted, the driving circuit 64 applies a spike voltage A and then continuously applies a hold voltage B to a coil 40.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: May 17, 2011
    Assignee: Yazaki Corporation
    Inventors: Takeshi Kamata, Keigo Sugimura, Sei Saito, Kiyoshi Yagi