Patents Examined by Paul Gensler
  • Patent number: 6133805
    Abstract: An apparatus for propagating high frequency energy hag a wavelength of .lambda. in a dielectric medium has first and second signal lines, substantially coplanar with each other, and carrying high frequency energy, A ground trace separates the signal lines and has a plurality of vias, each spaced a distance greater than one quarter .lambda. and less than one half .lambda. apart from another one of the vias.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: October 17, 2000
    Assignee: The Whitaker Corporation
    Inventors: Nitin Jain, John Stephen Atherton, Paul John Schwab, Graham J. H. Wells
  • Patent number: 6133806
    Abstract: A balun circuit includes a dielectric substrate having planar opposing surfaces: a groundplane conductor layer disposed on a first opposing surface; an interlayer conductor layer disposed on a second opposing surface and including first and second electrically isolated conducting strips, with a balance point gap between first ends thereof, and second ends thereof being short-circuited; an interlayer dielectric layer having substantially planar opposing surfaces, with a first opposing surface thereof being disposed over the interlayer conductor layer; and a top conductor layer disposed over a second opposing surface of the interlayer dielectric layer and including a third conducting strip overlying the first and second conducting strips, one end of the third conducting strip providing an unbalanced port terminal and another end of the third conducting strip being open-circuited.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: October 17, 2000
    Assignee: Industrial Technology Research Institute
    Inventor: Jyh-Wen Sheen
  • Patent number: 6130586
    Abstract: A mode filter for connecting two electromagnetic waveguides with different cross-sections includes a tubular section (4) with openings at both ends. The cross-sections of the openings match the cross-sections of the two different waveguides, while the interior space (11) of the tubular section (4) transitions from one cross-sectional shape into the other cross-sectional shape. Undesirable modes of the electromagnetic waves which are to be transmitted, are minimized by flat elements (14, 15) protruding radially inwardly into the transition region and extending axially along the tubular section (4). The flat elements (14, 15) are made of a material with a high electrical conductivity. The elements (14, 15) are arranged diametrically opposed from each other and aligned in the same plane and separated by a gap (16). The axial length of the flat elements is short in relation to the length of the tubular section (4).
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: October 10, 2000
    Assignee: Alcatel
    Inventor: Dietmar Schulz
  • Patent number: 6130588
    Abstract: A high-power wideband transformer (40). The transformer (40) includes a first input terminal (42) connected in parallel to one or more conductor paths (50 and 52) and to a first output conductor (48). A second input terminal (44) is connected in parallel to the one or more conductor paths (50 and 52) and to a second output conductor (54). An inductive device (56, 60, 64, 58, 62, and 66) effects electrical coupling between the one or more conductor paths (50 and 52) and the first output conductor (48) and between the one or more conductor paths (50 and 52) and the second output conductor (54) sufficient to implement a desired transformer ratio from input of the transformer (40) to output of the transformer (40) via approximately colinear wires (56, 60, and 64). In a first illustrative embodiment, the co-linear wires (56, 60, and 64) are parallel wires placed sufficiently close to effect the electrical coupling. The transformer 40 effects a nine-to-one transformer ratio.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: October 10, 2000
    Assignee: Raytheon Company
    Inventors: James R. Gallivan, Kenneth W. Brown, David R. Sar
  • Patent number: 6130587
    Abstract: An isolator/circulator can keep a size of a 3-way asymmetric propeller resonator and intensity of magnetism, control the preferred frequency, and improve the insertion loss and isolation characteristic due to reducing the ferrite usage region on the maximum, extend the wide band without the external wide band extension, finally to miniaturize, reduce the fabricating cost by means of a simple fabrication. A microstrip/stripline isolator/circulator having a propeller resonator can be used for the device protection and impedance matching of a system and terminal in a transfer communication, personal communication, CT and satellite communication.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: October 10, 2000
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dong Suk Jun, Meyung Soo Kim, Bon Hee Koo, Chang Hwa Lee, Sang Seok Lee, Tae Goo Choy
  • Patent number: 6127901
    Abstract: A microstrip transmission line to waveguide transmission line transition. A microstrip transmission line is separated from a ground plane by a dielectric therebetween. The microstrip transmission line terminates at a microstrip transmission line open circuit end. A waveguide channel having narrow dimension waveguide walls and a broad dimension base waveguide wall connected therebetween is provided. The waveguide channel has a waveguide short circuit wall located along the channel. The narrow dimension waveguide walls are coupled with the ground plane to provide a broad dimension top waveguide wall for the waveguide transmission line. An aperture is located transverse to the microstrip transmission line and passes through an aperture ground plane opening in the ground plane.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: October 3, 2000
    Assignee: HRL Laboratories, LLC
    Inventor: Jonathan J. Lynch
  • Patent number: 6124768
    Abstract: In a method for forming microwave testing high-power dummy load, a first center conductor, to which microwave power is input, is connected to a power distributor formed from a second center conductor having an output-side distal end branching into a plurality of portions. This causes the microwave power input to the first center conductor to separate into a plurality of outputs in correspondence with the output-side distal end of the second center conductor. A plurality of termination resistors are connected between the output-side distal end of the second center conductor and a ground conductor to make the termination resistors consume the microwave power. The heat generated by the termination resistors upon consumption of the microwave power is radiated by the ground conductor. A microwave testing high-power dummy load apparatus made by the above described method is also disclosed.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: September 26, 2000
    Assignee: NEC Corporation
    Inventor: Joji Makiyama
  • Patent number: 6121851
    Abstract: A non-reciprocal circuit element for transmitting a high-frequency signal of microwave band in one direction. The electrical characteristics of the non-reciprocal circuit element have been improved by using an insulating sheet having a thickness within a specific range thereby to regulate the distance between vertically adjacent strip electrodes within a specific range. Also, the product-to-product variation in the electrical characteristics of the non-reciprocal circuit element has been minimized by shaping the end portion of the strip electrode so as to extend in coplanar relationship to the top surface of the capacitor to be connected.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: September 19, 2000
    Assignee: Hitachi Metals Ltd.
    Inventors: Shinji Takane, Ryouji Matsumoto
  • Patent number: 6121854
    Abstract: A power divider includes an input port, a first output port, a second output port, a first transformer coupled between the input port and the first output port, and a second transformer coupled between the input port and the second output port. The first and second transformers each incorporates a low pass filter. The power divider further includes a ground plate disposed adjacent to the first and second transformers. The ground plate is capacitively coupled to the low pass filters of the first and second transformers for enhancing the low pass filtering characteristics of the power divider. The power divider provides low pass filtering capability while achieving a significant size reduction over conventional power dividers.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: September 19, 2000
    Assignee: Digital Microwave Corporation
    Inventors: Robert K. Griffith, Roland Matian
  • Patent number: 6118350
    Abstract: A system of resistive end termination and transmission line routing is disclosed for matching the impedance of an IC load to that of a signal source and a transmission line. Each integrated circuit has an internal termination resistor designed to match the characteristic impedance of the transmission line and preferably also the impedance of the source. When the source drives multiple IC devices on a printed circuit board, the devices are cascaded in a chain with the internal resistors of all but the last IC device in the chain bypassed by a short circuit underneath the device, so that a continuous transmission line is provided to the last IC device. The last IC in the chain, which does not have a short circuit underneath it, provides the necessary resistive termination by simply connecting the appropriate pin to a common reference in the circuit. The invention is also applicable to differential applications in which first and second complementary signal sources feed each IC device.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: September 12, 2000
    Assignee: Gennum Corporation
    Inventors: Atul Krishna Gupta, Dino Toffolon
  • Patent number: 6118354
    Abstract: A multi level splitter device suitable for CATV distribution systems utilizes transformers with bi-multiplefilar windings as well as impedance matching transformers selectively placed and port isolation techniques to provide excellent performance throughout a very broad frequency range. The device may utilize a standard JEDEC surface mount package, for example a 84 pin PLCC package which allows isolation of each of the output port terminals intermediate grounded terminals minimizing output line to output line crosstalk. Further, output line isolation is provided by use of resistors across adjacent "split" output lines.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: September 12, 2000
    Assignee: BH Electronics, Inc.
    Inventors: John E. Decramer, Franklin B. Gass
  • Patent number: 6118355
    Abstract: A dual band combiner for combining two frequency bands having a 2:1 relationship, e.g. 900 MHz and 1800 MHz. The combiner comprises an upper frequency bandpass filter section and an upper frequency bandstop filter. The bandpass filter section comprises two open-end resonators whose lengths are 1/2 wavelength of the upper frequency band, and the bandstop filter comprises three open-end resonators whose lengths are 1/4 wavelength of the upper frequency band. Because of the 2:1 frequency relationship pronounced selectivity-enhancing transmission zeros are produced at the lower frequency band, thereby providing a combiner that has high isolation between ports while maintaining low insertion loss.
    Type: Grant
    Filed: June 8, 1999
    Date of Patent: September 12, 2000
    Assignee: Alcatel
    Inventors: Dieter Pelz, Noel McDonald
  • Patent number: 6118412
    Abstract: A waveguide antenna assembly includes a feedhorn having a cavity coupled to a waveguide polarizer. The waveguide polarizer includes a single aperture waveguide, septum-loaded waveguide, and a dual aperture waveguide coupled inline. The septum-loaded waveguide includes an internal septum and is formed from at least one internal wall having a varying thickness. The length of the circular feedhorn and the diameter of the feedhorn cavity can be adjusted with the length of the single aperture waveguide to maximize signal isolation between the orthogonal signal ports.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: September 12, 2000
    Assignee: Victory Industrial Corporation
    Inventor: Ming Hui Chen
  • Patent number: 6118349
    Abstract: A nonreciprocal circuit device requires less layout space when single-board capacitors are used, and meets demands for a smaller and lighter configuration. An isolator (nonreciprocal circuit device) comprises a ferrite, a permanent magnet applying a direct current magnetic field to the ferrite, a plurality of central electrodes respectively having ports disposed on the ferrite and a single-board matching capacitor with capacitor electrodes formed on both surfaces of a dielectric substrate such that the capacitor electrodes are opposed to each other and sandwich the dielectric substrate. In various embodiments, the permanent magnet and/or the ferrite has a square shape and the capacitor electrodes of the matching capacitors are arranged at an angle of 60 to 90 degrees with respect to a mounting surface and the matching capacitors are disposed so as to surround the sides of the ferrite.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: September 12, 2000
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Takekazu Okada, Toshihiro Makino, Akihito Masuda, Takashi Kawanami
  • Patent number: 6118352
    Abstract: A description is given of a microwave component which includes a microwave conductor arrangement for conducting electromagnetic waves and a gyromagnetic material which is provided in operative contact with the electromagnetic waves and can be subjected to a magnetic field of adjustable field strength in that the gyromagnetic material, at least one magnet for generating the magnetic field, and a magnetic tuning member, whose magnetic conductivity can be varied in order to adjust the magnetic field strength, are arranged in a magnetic circuit.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: September 12, 2000
    Assignee: U.S. Philips Corporation
    Inventor: Ralf Wendel
  • Patent number: 6114923
    Abstract: Disclosed is a switching circuit which has: at least one unit circuit connected in series, the unit circuit being composed of two field-effect transistors connected in series and an inductor that has one end connected to a connection point between the two field-effect transistors and another end grounded; wherein the gates of the two field-effect transistors are commonly connected and a bias voltage to control the turning on/off of the two field-effect transistors is equally applied through a resistance to the respective gates.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: September 5, 2000
    Assignee: NEC Corporation
    Inventor: Hiroshi Mizutani
  • Patent number: 6114925
    Abstract: A bandpass filter which is suitable to be implemented using a multilayered structure, including multilayer ceramic/low temperature co-fired ceramic (MLC/LTCC) technique, is presented. In structure, there is no need of using a substrate with high dielectric constant to reduce the filter size, and it is suitable to be buried into the substrate and thus easy to integrate with other sub-modules to form a single, miniaturized, multifunction module. Electrically, the proposed filter can be modified by adjusting the location of those poles to meet the system specfication. These drastically reduce the amount or even the need for tuning, thereby lowering the filter cost.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: September 5, 2000
    Assignee: Industrial Technology Research Institute
    Inventor: Wen-Teng Lo
  • Patent number: 6114924
    Abstract: An RF directional coupler includes dual binocular ferrite cores. The dual cores are positioned back-to-back, such that the adjacent surfaces of each core contact each other. Each core has two generally cylindrical holes that extend through the core. Each hole preferably extends longitudinally through each respective core and is parallel to each other hole. One core is called the "main core" and the other core is called the "return core". Wire windings enter the coupler from the printed circuit board from the bottom of the coupler. A winding enters one hole in the main core and exits the hole on the top of the coupler. The winding then enters the corresponding hole in the return core from the top of the coupler. The winding then proceeds downwardly and exits the hole in the return core at the bottom of the coupler. After exiting the return core, the winding may then again enter the hole in the main core or may connected to a connection port on the printed circuit board.
    Type: Grant
    Filed: April 22, 1998
    Date of Patent: September 5, 2000
    Assignee: Antec Corporation
    Inventors: Steven L. Cain, Michael G. Ellis
  • Patent number: 6111476
    Abstract: The invention is a non-contact coupling system for use in interconnecting a large number of electronic modules to a main signal trace via non-contact couplers. A driver sends an electronic signal comprising pulses along the main signal trace. The couplers each have a track of conductive material substantially parallel to the main signal trace. The track of each succeeding coupler is longer than that of the preceding coupler. As a pulse travels from the driver alongside the track of the closest coupler, a pulse is induced therein, although part of the original pulse energy is lost. The remaining lower-energy pulse then couples onto the second-closest coupler but because of the longer parallel track, an induced pulse virtually as strong as the pulse imparted to the first coupler is produced. This phenomenon occurs at every coupler along the main signal trace, resulting in induced pulses that have a relatively low amplitude variation.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: August 29, 2000
    Assignee: Nortel Networks Corporation
    Inventor: John Michael Williamson
  • Patent number: RE36845
    Abstract: A connection assembly includes a coaxial cable to microstrip flexible circuit connector and a mating microstrip flex circuit to electronic circuit connector. The coaxial cable to microstrip flex circuit connector comprises a portion which is mechanically attached to the coaxial cable and a portion which is mechanically attached to the microstrip flex circuit. The coaxial cable attachment portion includes a first electrical connector electrically connected to the center conductor and a second electrical connector electrically connected to the shielding conductor of each coaxial cable. The microstrip flex circuit attachment portion includes a third electrical connector electrically connected to each trace and a fourth connector electrically connected to the ground plane conductor. The flex circuit to electrical circuit connector comprises a plurality of unsupported extensions of a trace or the ground plane conductor.
    Type: Grant
    Filed: August 13, 1997
    Date of Patent: August 29, 2000
    Assignee: Medallion Technology, LLC
    Inventors: Jon M. Huppenthal, Steven E. Garcia, James A. Harden, Jr., Catherine A. Herzog