Patents Examined by Peter Radkowski
  • Patent number: 10353154
    Abstract: A fiber optic cable and connector assembly including a fiber optic connector mounted at the end of a fiber optic cable. The fiber optic connector includes a ferrule assembly including a stub fiber supported within a ferrule. The stub fiber is fusion spliced to an optical fiber of the fiber optic cable at a location within the fiber optic connector.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: July 16, 2019
    Assignee: CommScope Technologies LLC
    Inventors: Michael James Ott, Thomas P. Huegerich, Steven C. Zimmel, Ponharith Nhep
  • Patent number: 10353157
    Abstract: Backplane optical connectors and optical connections are disclosed herein. In one embodiment, a backplane optical connector includes a ferrule element that includes a body portion having optical interface, at least two bores positioned through the body portion, at least two posts extending from the body portion, and a fiber inlet portion extending from the body portion. The fiber inlet portion includes a fiber receiving opening. The backplane optical connector further includes a magnet disposed within each bore of the at least two bores, and a bias member coupled to the at least two posts.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: July 16, 2019
    Assignee: Corning Optical Communications, LLC
    Inventors: Davide Domenico Fortusini, James Phillip Luther, Jerald Lee Overcash
  • Patent number: 10345536
    Abstract: The present invention discloses an optical fiber connector, comprising: a housing, a ferrule installed within said housing; an end sleeve, connecting to the rear end of said housing; and an optical cable clamp, installed by insertion within said end sleeve, being provided for the purpose of clamping an optical cable. Said optical cable is secured within said optical cable clamp, and after said optical cable clamp is inserted and secured within said end sleeve, the optical fiber of said optical cable is inserted within said housing and butt-joined with the embedded optical fiber within said ferrule. As a result of this, before the butt-joined optical fibers are locked in, the optical cable has already been secured within the optical cable clamp and fixed to the connector housing. Therefore, the butt-joined optical fibers cannot be separated due to the effects of unexpected pulling force, thus ensuring the optical fiber of the optical cable reliably abuts the embedded optical fiber.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: July 9, 2019
    Assignee: CommScope Telecommunications (Shanghai) Co., Ltd.
    Inventors: Liang Shao, Yanhong Yang
  • Patent number: 10345097
    Abstract: A strain measurement method and device are provided. The strain measurement device includes at least one filiform strain sensor and a support of longilinear shape on which the filiform strain sensor is positioned. The strain measurement device also includes a stiffener.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: July 9, 2019
    Assignee: AIRBUS OPERATIONS S.A.S.
    Inventors: Marc Sartor, Patricia Morgue, Manuel Paredes
  • Patent number: 10326233
    Abstract: A sealing interface (26) that utilizes an elastomeric sealing member (28) is disclosed herein. The sealing interface (26) is configured to provide effective sealing while requiring only relatively low amounts of force to deform the elastomeric sealing member (28) sufficiently to form an effective seal.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: June 18, 2019
    Assignee: CommScope Connectivity Belgium BVBA
    Inventors: Philippe Coenegracht, Maddy Nadine Frederickx
  • Patent number: 10317638
    Abstract: A fiber optic cassette includes a body defining a front and an opposite rear. A cable entry location, such as a multi-fiber connector, is defined on the body for a cable to enter the cassette, wherein a plurality of optical fibers from the cable extend into the cassette and form terminations at one or more single or multi-fiber connectors adjacent the front of the body. A flexible substrate is positioned between the cable entry location and the connectors adjacent the front of the body, the flexible substrate rigidly supporting the plurality of optical fibers. Each of the connectors adjacent the front of the body includes a ferrule. Dark fibers can be provided if not all fiber locations are used in the multi-fiber connectors. Multiple flexible substrates can be used with one or more multi-fiber connectors.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: June 11, 2019
    Assignees: CommScope Asia Holdings B.V., CommScope Technologies LLC
    Inventors: Paul Schneider, Alexander Dorrestein, James Joseph Eberle, Jr.
  • Patent number: 10310190
    Abstract: A fiber optic connection system (10/182/252) includes a first connection component (12/166/184/194/202/230/254) terminating a first fiber optic cable (14), the first connection component (12/166/184/194/202/230/254) including a housing (24/170/214/244/260) defining a longitudinal axis, at least one fiber (20) of the first fiber optic cable (14) fixed axially to the housing (24/170/214/244/260). A first shutter (36/206/238) is slidably movable in a direction generally perpendicular to the longitudinal axis of the housing (24/170/214/244/260), the first shutter (36/206/238) biased to a closed position to prevent exposure to the at least one fiber (20) of the first fiber optic cable (14).
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: June 4, 2019
    Assignee: CommScope Connectivity Belgium BVBA
    Inventor: Danny Willy August Verheyden
  • Patent number: 10302877
    Abstract: An optical cross-connect component mutually connecting an end of a first optical fiber group and an end of a second optical fiber group is disclosed. The optical cross-connect component includes a plurality of first connectors housing therein the end of the first optical fiber group, and a plurality of second connectors housing therein the end of the second optical fiber group. The m×n optical fibers in the first optical fiber group are housed in any of the plurality of first connectors, and the m×n optical fibers in the second optical fiber group are housed in any of the plurality of second connectors. The end of the first optical fiber group and the end of the second optical fiber group are connected so as to be butted to each other.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: May 28, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tomomi Sano, Hiroo Kanamori
  • Patent number: 10295766
    Abstract: The present disclosure provides an optical module, including: an optical sub-module and a first housing; where a first sub-surface of the optical sub-module is provided with a first boss, and the first housing is provided with a first opening corresponding to the first boss. The improved structure of the optical module can greatly increase heat conduction efficiency of the optical module.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: May 21, 2019
    Assignee: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD.
    Inventors: Biao Chen, Liuyin Yang
  • Patent number: 10288803
    Abstract: An image-conducting optical fiber bundle extends along a central bundle axis between image input and image output ends. The bundle is twisted along a portion of its length such that an image inputted into the image input end is angularly displaced about the central bundle axis before being outputted through the image output end. Each constituent optical fiber includes a cladding with a cladding diameter corresponding with the fiber diameter of that fiber and a core with a core diameter. The ratio of the core diameter to the cladding diameter defines a core-to-clad diameter ratio relative to each fiber. In various embodiments, at least one of fiber diameter and core-to-clad diameter ratio varies as a function of a fiber's radial displacement from the central bundle axis.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: May 14, 2019
    Assignee: Schott Corporation, Inc.
    Inventors: Kevin Tabor, Paige Higby, Paulette I. K. Onorato
  • Patent number: 10281648
    Abstract: A substrate is composed of a first material. A photonic structure is composed of the first material connected to one or more support structures composed of the first material between the photonic structure and a surface of the substrate, with at least one of the support structures supporting a first section of a strip of the photonic structure. The first section has a width that is wider than a width of a second section of the strip and has a length that is at least about twice the width of the second section of the strip.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: May 7, 2019
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael J. Burek, Marko Loncar
  • Patent number: 10267989
    Abstract: A substrate locally pre-structured for the production of photonic components including a solid part made of silicon; a first localised region of the substrate, including a heat dissipation layer, produced in a localised manner on the surface of the solid part and made of a material of which the refractive index is less than that of silicon; a wave guide on the heat dissipation layer; a second localised region of the substrate, including an oxide layer produced in a localised manner on the surface of the solid part, the oxide having a heat conductivity less than that of the material of the heat dissipation layer; a wave guide on the oxide layer.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: April 23, 2019
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Karim Hassan, Corrado Sciancalepore, Helene Duprez, Badhise Ben Bakir
  • Patent number: 10261249
    Abstract: An optical module includes a first board that includes a recessed portion and a first conductor layer, a second board accommodated in the recessed portion and includes an optical waveguide and a second conductor layer, a semiconductor element installed across the first board and the second board and coupled to the first conductor layer and the second conductor layer, and a first bonding material disposed between a sidewall and a bottom surface of the recessed portion and the second board so as to bond the first board and the second board to each other.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: April 16, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Norio Kainuma, Naoaki Nakamura, Kenji Fukuzono
  • Patent number: 10261263
    Abstract: An optical power transfer system for launching a spacecraft into low Earth orbit comprising a ground-based laser power generation station and a launch vehicle optically connected thereto. The generation station is capable of generating high optical power in the range of kilowatts to tens of megawatts and transferring the optical power generated to a launch vehicle to generate thrust. The generation station comprises a high power source, a chilling station, a laser, optical fiber, and at least one coupler. The launch vehicle comprises an actively cooled fiber spooler mounted thereon with a length of fiber for transmission of high optical energy circumscribing at least part thereof. The launch vehicle also contains a working fluid and fluid reservoir, a thruster assembly, an air intake and a storage chamber. In alternative embodiments, the launch vehicle may contain a beam switch assembly, multiple fiber spoolers and multiple thruster assemblies wherein at least one thruster assembly is gimbaled.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: April 16, 2019
    Assignee: Stone Aerospace, Inc.
    Inventors: William C. Stone, Bartholomew P. Hogan
  • Patent number: 10254477
    Abstract: An integrated optical component includes at least one input waveguide, at least one output waveguide; a first slab waveguide having a first refractive index, n1. The first slab waveguide may be disposed between at least one of the input waveguides and at least one of the output waveguides. The integrated optical component may further include a second slab waveguide having a second refractive index, n2. The integrated optical component may also include a third cladding slab having a third refractive index, n3. The third cladding slab may be disposed between the first slab and the second slab. The thickness of the second slab waveguide and the thickness of the third slab waveguide are adjustable to reduce a birefringence of the integrated optical component.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: April 9, 2019
    Assignee: FINISAR CORPORATION
    Inventors: Daniel Mahgerefteh, Jared Mikkelsen
  • Patent number: 10242976
    Abstract: In one embodiment, a microelectronic package structure comprises a substrate comprising at least one waveguide, a first instrument integrated circuit coupled to the substrate, a photonic engine coupled to the substrate and comprising an integrated circuit body, a transmit die. and a receive die. The photonic engine is positioned adjacent the at least one waveguide such that optical signals may be exchanged between the at least one waveguide and the transmit die and the at least one waveguide and the receive die. Other embodiments may be described.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: March 26, 2019
    Assignee: INTEL CORPORATION
    Inventor: Myung Jin Yim
  • Patent number: 10241273
    Abstract: A polarization rotator and an optical signal processing method are disclosed. A first transceiving waveguide includes a first end and a second end; a polarization rotation region waveguide includes a first waveguide and a second waveguide, where the first waveguide is located above the second waveguide, the first waveguide is connected to the second end of the first transceiving waveguide, the first waveguide and the second waveguide are non-linear profile waveguides; a mode conversion region waveguide includes a third waveguide and a fourth waveguide, where the third waveguide is connected to the second waveguide, the fourth waveguide is on a same horizontal plane as the third waveguide and the second waveguide, the third waveguide and the fourth waveguide are non-linear profile waveguides; and the second transceiving waveguide includes a third end and a fourth end, where the third end of the second transceiving waveguide is connected to the fourth waveguide.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: March 26, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xin Tu, Yuming Wei, Hongyan Fu
  • Patent number: 10241279
    Abstract: A cable gripping structure for securing an optical fiber cable in an optical fiber connector possesses a base part and a pair of support walls disposed opposite one another on the base part, and blade parts for gripping the optical fiber cable are disposed on the pair of support walls, at the tip ends thereof and separated from the bases of the support walls.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: March 26, 2019
    Assignee: Corning Research & Development Corporation
    Inventors: Akihiko Yazaki, Takaya Yamauchi
  • Patent number: 10232623
    Abstract: A cartridge may include a fluid reservoir, a print head to eject fluid from the reservoir through nozzles and bubblers. The print head may include a fluid feed slot to supply fluid from the reservoir to the nozzles. The bubblers are opposite the fluid feed slot.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: March 19, 2019
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Ozgur E. Yildirim, Volker Smektala, Mike H. Steed, Joseph R. Elliot
  • Patent number: 10234626
    Abstract: A photonic device includes a semiconductor wafer having a waveguide formed therein. An end of the waveguide includes a step. The photonic device further includes a semiconductor chip bonded to the semiconductor wafer and having an active region, and a waveguide coupler disposed in a gap between a sidewall of the semiconductor chip and the end of the waveguide. The waveguide coupler includes an optical bridge that has a first end and a second end opposing the first end. The first end of the optical bridge is interfaced with a facet of the active region of the semiconductor chip. The second end of the optical bridge is interfaced with the end of waveguide, and has a portion thereof disposed over the step at the end of the waveguide.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: March 19, 2019
    Assignee: Skorpios Technologies, Inc.
    Inventor: Damien Lambert