Patents Examined by Philip L Cotey
  • Patent number: 11668609
    Abstract: In variants, an automatically-identifiable temperature probe can include: a probe body, one or more sensors, a connector, and/or any other suitable components. In variants, the method for temperature determination can include: determining a set of electrical signals, determining a temperature probe type based on the set of electrical signals, determining a sensor resolution model based on the temperature probe type, and determining a set of final temperature estimates based on the set of electrical signals and the sensor resolution model.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: June 6, 2023
    Assignee: June Life, Inc.
    Inventors: Nikhil Bhogal, Nicholas Beyrer, Gabriel Risk, Mathias Watson Schmidt
  • Patent number: 11668612
    Abstract: A method for trimming analog temperature sensors. First, raise a temperature of a temperature sensor to a highest temperature of a qualification temperature range. Then, trim the temperature sensor such that a high temperature code generated by the temperature sensor represents an actual temperature reported by the temperature sensor at the highest temperature. Next, lower the temperature of the temperature sensor to a lowest temperature of the qualification temperature range. Determine a slope error between the high temperature code and a low temperature code generated by the temperature sensor at the lowest temperature. Finally, determine a correction function that compensates for the slope error of measured temperature codes generated by the temperature sensor for temperatures across the qualification temperature range.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: June 6, 2023
    Assignee: SanDisk Technologies LLC
    Inventors: Venkata Nittala, Sridhar Yadala, Sivakumar Grandhi
  • Patent number: 11662266
    Abstract: A water heater includes a tank assembly that defines an insulation cavity between an inner storage tank and an outer jacket. The water heater includes a bottom pad that supports the tank assembly thereon. The bottom pad is disposed in a bottom pan. Gaskets are disposed between the bottom pad and the bottom pan of the water heater. The bottom pad and at least one of the gaskets include apertures that are configured to internally route a leak sensor assembly of the water heater from the bottom pan to a controller of the water heater through the insulation cavity while preventing a leak of insulation material from the insulation cavity to the bottom pan. The water heater also includes a mounting bracket that is coupled to the inner storage tank to securely hold and route a portion of the leak sensor assembly disposed in the insulation cavity to the controller.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: May 30, 2023
    Assignee: Rheem Manufacturing Company
    Inventors: Damian Weitherspoon, Jessie L. Dixon, Nahoko Maciulewicz, Shreya Gharia
  • Patent number: 11655726
    Abstract: A sensor includes an airfoil body, a heater element, and a temperature probe. The airfoil body defines a sensor axis, an insulating cavity, and extends between a leading edge and a trailing edge of the airfoil body. The heater element extends axially within the airfoil body and is positioned between the leading edge and the trailing edge of the airfoil body. The temperature probe extends axially within the airfoil body, is positioned between the heater element and the trailing edge of the airfoil body, and is separated from the heater element by the insulating cavity to limit thermal communication between the temperature probe and the heater element. Gas turbine engines, methods of making sensors, and methods of thermally separating temperature probes and heater elements in sensors are also described.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: May 23, 2023
    Assignee: ROSEMOUNT AEROSPACE INC.
    Inventors: Andrew Holl, Scott Wigen, Robert Edward Sable, Scott D. Isebrand, Brian Boyd
  • Patent number: 11656132
    Abstract: A sticking type deep-body thermometer is provided that includes a body temperature measurement unit having a wiring substrate on which four temperature sensors and a processing circuit are mounted. The thermometer includes an upper case accommodating the body temperature measurement unit, an lower case that is in close contact with the upper case and a peripheral edge portion, and a sticking member stuck to an outer side surface of the lower case. The sticking member is formed in a sheet-like shape, has a pair of sticking surfaces with adhesiveness, and one sticking surface of the pair of sticking surfaces is stuck to the outer side surface of the lower case in a peelable manner.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: May 23, 2023
    Assignee: MURATA MANUFACTURING CO, LTD.
    Inventors: Toru Shimuta, Yoshihide Amagai
  • Patent number: 11650108
    Abstract: Systems, methods, and computer-readable media are disclosed for a pulse switched high side driver for vehicle sensor. An example method may include switching a transistor of a vehicle circuit to connect a first resistor to a vehicle sensor for a first time period in which exhaust gas temperature values of the vehicle are within a first range of exhaust gas temperatures values. The example method may also include switching, by providing a pulse-width modulation (PWM) signal with an on signal value, the transistor to connect a second resistor to a vehicle sensor for a second period of time in which exhaust gas temperature values of the vehicle are within a second range of exhaust gas temperatures values that are greater than the first range of exhaust gas temperature values, wherein the second resistor and vehicle sensor are also included in the vehicle circuit, wherein the second resistor is in parallel with a first resistor and connected between the transistor and the vehicle sensor.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: May 16, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Mike Robert Garrard, Ibrahim Sonat, Vishal Desai, Roberto Teran, Jr., Ed A. Schoenberg
  • Patent number: 11644366
    Abstract: Disclosed is a combined bluetooth thermometer. The combined bluetooth thermometer includes a body box, a first probe and a second probe, the first probe is detachably provided on the body box; the first probe along a length direction of the first probe successively includes a first temperature measurement section, a transition section and a charging section; the first temperature measurement section is configured for temperature measurement; and the charging section is configured for providing an electrical connection between the first probe and the body box for charging the first probe; the second probe includes a second temperature measurement section and a connecting section; the second temperature measurement section is configured for temperature measurement; and the connecting section is connected with the body box to rotationally connect the second probe with the body box.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: May 9, 2023
    Assignee: Shenzhen Fanshengda Technology Co., LTD.
    Inventor: Manfeng Chen
  • Patent number: 11635334
    Abstract: Embodiments described herein are directed to a temperature measurement device that includes a sensor body configured to be placed on a skin of a user. The temperature measurement device can include a first section defining a first lower surface and having a first thickness, a second section defining a second lower surface and having a second thickness, and a channel separating the first lower surface from the second lower surface. The temperature measurement device can also include a first set of temperature sensors positioned across the first thickness, a second set of temperature sensors positioned across the second thickness, and a processor configured to estimate a tissue temperature of the user based on comparing temperature signals from the first set of temperature sensors with temperature signals from the second set of temperature sensors.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: April 25, 2023
    Assignee: Apple Inc.
    Inventors: Helia Rahmani, Anthony D. Minervini, Wanfeng Huang, James C. Clements, Jiandong Yu, Zijing Zeng, Charley T. Ogata
  • Patent number: 11630072
    Abstract: A process fluid temperature calculation system includes a first temperature sensor disposed to measure an external temperature of a process fluid conduit. The process fluid temperature calculation system has a stem portion having a known thermal impedance. A second temperature sensor is spaced from the first temperature sensor by the stem portion. Measurement circuitry is coupled to the first and second temperature sensors. A microprocessor is coupled to the measurement circuitry to receive temperature information from the measurement circuitry and to provide an estimate of temperature of process fluid within the process fluid conduit using a heat flux calculation.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: April 18, 2023
    Assignee: Rosemount Inc.
    Inventors: Jason H. Rud, Yury Nickolayevich Kuznetsov, Sait Saitovich Garipov, Aleksey Aleksandrovich Krivonogov, Sergey Andreyevich Fomchenko, Vladimir Victorovich Repyevsky
  • Patent number: 11592339
    Abstract: A device may comprise: a storage for storing a reference output representing an output of an electrical circuit at a reference temperature; one or more processors, configured to: determine a temperature shift based on a comparison of an output of the electrical circuit sensed at a sensing temperature and the reference output; determine a plurality of coefficients of a model of the temperature shift, wherein the model implements one or more functions that associate the plurality of coefficients and a temperature with the temperature shift at the temperature.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: February 28, 2023
    Assignee: INTEL CORPORATION
    Inventors: Omer Sholev, Elan Banin, Ofir Degani, Assaf Ben-Bassat
  • Patent number: 11593927
    Abstract: A method of inspecting an air data probe for damage or misalignment on a mounting surface includes retrieving reference data for the air data probe from a database, capturing images of the air data probe via a camera and generating dimensions from the captured images of the air data probe via a feature extractor. An alignment calculator analyzes the generated dimensions from the captured images of the air data probe and the reference data for the air data probe from the database to identify misalignment of the air data probe, and analyzes the generated dimensions from the captured images of the air data probe and the reference data for the air data probe from the database to identify damage of the air data probe. A maintenance recommendation for the air data probe is generated and outputted, based on the identified misalignment or damage of the air data probe.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: February 28, 2023
    Assignee: Rosemount Aerospace Inc.
    Inventors: Cal Roeske, William Kunik, Brian Brent Naslund, Rameshkumar Balasubramanian
  • Patent number: 11586232
    Abstract: A wireless and cellular vibration monitoring device (2) comprising a connection structure (6) suitable for attaching the monitoring device (2) to equipment to be monitored is disclosed. The monitoring device (2) comprises a temperature sensor (8) and a vibration sensor (10) configured to remotely monitor vibration and temperature transferred to the monitoring device (2) via the connection structure (6). The device comprises an integrated satellite-based radio-navigation system for location detection. The monitoring device (2) comprises a metal base (4) comprising a body portion (56) comprising a threaded portion (6) constituting the connection structure (6). The threaded portion (6) comprises male threads and protrudes from the body portion (56) of the base (4). The temperature sensor (8) is thermally connected to the body portion (56) of the base (4).
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 21, 2023
    Assignee: AMI Global
    Inventors: Ori Peled, Omer Zeharhary
  • Patent number: 11579025
    Abstract: A thermal sensor module, comprising: a housing, wherein the housing comprises a first end and a second end, wherein the housing is hollow and configured to allow a fluid to flow into the housing through the first end and exit through the second end; a heat source, wherein the heat source is disposed at a central axis of the housing and traverses at least partially through the housing; and a temperature sensor, wherein the temperature sensor is positioned in the housing to measure temperature of the fluid flowing in the housing.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: February 14, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michel Joseph LeBlanc, Christopher Michael Jones, Michael Thomas Pelletier, Peter Olapade
  • Patent number: 11573129
    Abstract: An intelligent meat thermometer with the possibility of performing temperature measurements at three or more points in the meat, where at least one is measured on the far side of the center of the meat opposite the point of insertion, so that the center is between two points of measurement after insertion, so that the center temperature can be estimated, the meat thermometer, furthermore, being designed to be cheap to manufacture, and it can include an external unit for doing calculations, possibly via wireless connection, on received measurement data, and displaying of these calculations, and setting of parameters for use with the calculations.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 7, 2023
    Assignee: COOKPERFECT APS
    Inventors: Kasper Kristensen, Martin Kloster
  • Patent number: 11566948
    Abstract: A method, apparatus and system for measuring a temperature can involve measuring a voltage with a resistance temperature detector using a variable excitation current, and deriving a process temperature from the voltage measured by the resistance temperature detector. The process temperature can be further derived by applying a plurality of values of the variable excitation current, measuring corresponding values of voltage, and estimating a resistance by applying a least square estimation. The process temperature can also be derived by applying a different value of the variable excitation current at every iteration, using a recursive least square estimation to measure a resistance, and using confidence intervals for instrument diagnostics.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 31, 2023
    Assignee: Honeywell International Inc.
    Inventors: Eduardo Gallestey Alvarez, Sarabjit Singh, Shripad Kumar Pande, Seshagiri Yamarthi
  • Patent number: 11549852
    Abstract: Exemplary sap flow sensors are provided. A sap flow sensor includes a substrate having a main body and at least two arms spaced apart from one another. The at least two arms extend from the main body. The sap flow sensor further includes a sap flow gauge that is disposed on the substrate. The sap flow gauge is configured to monitor a flow rate of sap through a stem of a plant. The sap flow gauge includes a heating element coupled to an arm of the at least two arms. The sap flow gauge further includes a first temperature sensor and a second temperature sensor disposed on opposite sides of the heating element. The first temperature sensor and the second temperature sensor each coupled to a neighboring arm of the at least two arms.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: January 10, 2023
    Assignee: CALVERT VENTURES LLC
    Inventors: Pushpam Joseph Aji John, Kevin Xu
  • Patent number: 11543296
    Abstract: A method may include heating a substrate in a first chamber to a platen temperature, the heating comprising heating the substrate on a platen; measuring the platen temperature in the first chamber using a contact temperature measurement; transferring the substrate to a second chamber after the heating; and measuring a voltage decay after transferring the substrate to the second chamber, using an optical pyrometer to measure pyrometer voltage as a function of time.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Eric D. Wilson, Steven Anella, D. Jeffrey Lischer, James McLane, Bradley M. Pomerleau, Dawei Sun
  • Patent number: 11543300
    Abstract: The disclosure is directed to techniques for a thermostat to determine the air temperature of a room based on measurements of temperatures sensors located inside a housing of the thermostat. Because the thermostat for an evaporative cooler operates at line voltage and controls current flowing to the evaporative cooler, the magnitude of current flowing through the thermostat may vary from nearly zero, when the thermostat is in the powered-off state, to a current on the order of several amps. The variation in current causes a variation in temperature inside the housing of the thermostat. The techniques of this disclosure compensate for changes the internal housing temperature caused by changes in operating mode. The compensation allows the temperature sensors inside the thermostat housing to determine the air temperature of the room in which the thermostat is located, without regard for the operating mode of the evaporative cooler system.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: January 3, 2023
    Assignee: Ademco Inc.
    Inventors: Rafael Aguilar, Ricardo Cano, Ever Hernandez, Ricardo Gonzalez
  • Patent number: 11536155
    Abstract: A system for wirelessly monitoring temperatures of a gas turbine engine comprising a wireless sensor positioned on or in a component of the engine, one or more interrogating antennas capable of transmitting an RF signal to the wireless sensor and receiving an RF return signal from the wireless sensor, and a processing unit capable of interpreting the RF return signal to determine a temperature of the component inside the engine. In an embodiment, the wireless sensor comprises polymer derived ceramics (“PDC”) deposited on an Inconel surface of the engine. In an embodiment, the wireless sensor sustains temperatures up to 1000° C. during long term operation of the part of the engine. In an embodiment, the wireless sensor comprises multiple layers including a metallic patch antenna, a PDC layer, and a bond coat which provides a metallic ground plane for the sensor.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: December 27, 2022
    Assignee: SENSATEK PROPULSION TECHNOLOGY, INC.
    Inventor: Reamonn Soto
  • Patent number: 11525745
    Abstract: A sensor device for calculating air temperature includes a support structure, to be traversed by the air and defining a seat having an air inlet and an air outlet, and a sensor arranged inside the seat to detect at least one first value and at least one second value of the air temperature that traverses the seat. The sensor device is configured so that, when detecting the first and second value, the air traverses the seat at a first and at a second speed, at which the sensor has a first and second heat transfer coefficient and first and second radiant power. The ratio between air speeds, heat transfer coefficients, or radiant powers is predetermined. The sensor device can be used with a data processing logic unit that calculates the air temperature starting from the first value, the second value, or the ratios between air speeds and radiant powers.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: December 13, 2022
    Inventors: Juri Jurato, Timoteo Galia