Patents Examined by Philip Louie
  • Patent number: 9783740
    Abstract: Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods and systems for processing a reaction product containing lignin-derived products, such as phenolics, can comprise hydrotreating the reaction product to convert the lignin-derived products to desired higher molecular weight compounds. The methods can further include separating the higher molecular weight compounds from unconverted products, such as unconverted phenolics, and recycling the unconverted phenolics for use as at least a portion of the digestion solvent and for further conversion to desired higher molecular weight compounds with additional hydrotreatment.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: October 10, 2017
    Assignee: SHELL OIL COMPANY
    Inventors: Joseph Broun Powell, Juben Nemchand Chheda, Lamar Lane Joffrion, Philip Walter Anderson
  • Patent number: 9783464
    Abstract: A novel process and a novel catalyst for the production of light olefins. 1-butene is cracked in the presence of an acid- or base-modified silicalite-1 catalyst bed, wherein the modified silicalite-1 has a Si/Al ratio of greater than 1000. The modification procedures described herein increase the selectivity of the silicalite-1 catalyst toward light olefins such as ethylene and propylene. The catalytic cracking of 1-butene may be carried out in a fixed bed reactor or a fluidized bed reactor.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 10, 2017
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Abdullah Mohammed Aitani
  • Patent number: 9688590
    Abstract: A process for the production of jet and other heavy fuels, the process including: contacting at least one C3 to C5 isoalkanol with a first catalyst to convert at least a portion of the isoalkanol to isoalkene, isoalkene dimers, and water; contacting at least a portion of the isoalkene dimers with a second catalyst to convert at least a portion of the isoalkene dimers to isoalkene trimers; hydrotreating the isoalkene trimers to form isoalkanes useful as a jet fuel, kerosene, or other heavy fuels.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: June 27, 2017
    Assignee: Catalytic Distillation Technologies
    Inventors: William M. Cross, Jr., Gary G. Podrebarac
  • Patent number: 9688589
    Abstract: Disclosed is a process for preparation of n-propyl benzene. The process gives high selectivity and yield of n-propyl benzene by single step catalytic alkylation that involves contacting a mixture of aromatic hydrocarbon having an active hydrogen on a saturated ?-carbon, such as toluene, and an alkene, such as ethylene, in presence of a metal catalyst, a solid support, and an initiator. Following the alkylation, aqueous and organic phases are separated from a reaction mixture. The aqueous phase is separated for recovery of the catalyst, the solid support, and un-reacted aromatic hydrocarbon (e.g., toluene); and the organic phase is separated for obtaining n-propyl benzene and byproduct. Thus, the catalyst phase can be recovered and recycled in the next alkylation reaction. Also, the process facilitates recovery and recycling of the byproduct for the better selectivity.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: June 27, 2017
    Assignee: VINATI ORGANICS LIMITED
    Inventors: Prashant Purushottam Barve, Jayesh Ajitkumar Ashar
  • Patent number: 9682899
    Abstract: This invention relates to the conversion of substantially-saturated hydrocarbon to higher-value hydrocarbon products such as aromatics and/or oligomers, to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: June 20, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Juan D. Henao, Paul F. Keusenkothen, Abhimanyu O. Patil
  • Patent number: 9682900
    Abstract: This disclosure relates to the conversion of methane to higher molecular weight (C5+) hydrocarbon, including aromatic hydrocarbon, to materials and equipment useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: June 20, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Juan D. Henao, Abhimanyu O. Patil, Guang Cao
  • Patent number: 9677011
    Abstract: The invention relates to a process and an apparatus for producing hydrocarbon components in the presence of a hydrodesulphurization catalyst. The components obtained by the process are suitable for use as fuel composition as such or as an additive in fuel compositions, and in cosmetics or pharmaceutical products.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: June 13, 2017
    Assignee: UPM-KYMMENE CORPORATION
    Inventors: Pekka Knuuttila, Jaakko Nousiainen
  • Patent number: 9670115
    Abstract: A two catalyst system is described having separate catalyst beds for the selective conversion of acetylene to ethylene which reduces the concentration of acetylene, dienes, O2, and NOx is disclosed. An ethylene containing gas stream, such as an off-gas stream from a refinery catalytic cracking unit used in the production of fuels and gas oils, is treated by first contacting the gas stream with a silver catalyst supported on a metal oxide and subsequently contacting the gas stream with a ruthenium catalyst supported on metal oxide. The two catalysts are contained within contiguous continuous reactors or reactor compartments.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: June 6, 2017
    Assignee: Clariant Corporation
    Inventors: Mingyong Sun, Steven A. Blankenship, Michael A. Urbancic, Richard Paul Zoldak
  • Patent number: 9656244
    Abstract: The invention relates to the use of a novel silica-supported trimetallic (La/Zr/Zn) catalyst in the production of 1,3-butadiene from ethanol. The presence of lanthanum in the catalyst further comprising zirconium and zinc increases the catalyst's yield and selectivity to 1,3-butadiene.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: May 23, 2017
    Assignee: SYNTHOS S.A.
    Inventors: Marek Lewandowski, Agnieszka Ochenduszko, Matthew Jones
  • Patent number: 9656928
    Abstract: A novel process and a novel catalyst for the production of light olefins. 1-butene is cracked in the presence of an acid- or base-modified silicalite-1 catalyst bed, wherein the modified silicalite-1 has a Si/Al ratio of greater than 1000. The modification procedures described herein increase the selectivity of the silicalite-1 catalyst toward light olefins such as ethylene and propylene. The catalytic cracking of 1-butene may be carried out in a fixed bed reactor or a fluidized bed reactor.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: May 23, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Abdullah Mohammed Aitani
  • Patent number: 9644152
    Abstract: A bottom fraction of a product of a hydrocatalytic reaction is gasified to generate hydrogen for use in further hydrocatalytic reactions. In one embodiment, an overhead fraction of the hydrocatalytic reaction is further processed to generate higher molecular weight compounds. In another embodiment, a product of the further processing is separated into a bottom fraction and an overhead fraction, where the bottom fraction is also gasified to generate hydrogen for use in further hydrocatalytic reactions.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: May 9, 2017
    Assignee: SHELL OIL COMPANY
    Inventors: Andries Quirin Maria Boon, Joseph Broun Powell, Lamar Lane Joffrion, Kimberly Ann Johnson, Hubert Willem Schenck
  • Patent number: 9644151
    Abstract: A bottom fraction of a product of a hydrocatalytic reaction is gasified to generate hydrogen for use in further hydrocatalytic reactions. In one embodiment, one or more volatile organic compounds is also vaporized using heat generated in the gasification process. In one embodiment, an overhead fraction of the hydrocatalytic reaction is further processed to generate higher molecular weight compounds. In another embodiment, a product of the further processing is separated into a bottom fraction and an overhead fraction, where the bottom fraction is also gasified to generate hydrogen for use in further hydrocatalytic reactions.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: May 9, 2017
    Assignee: SHELL OIL COMPANY
    Inventors: Joseph Broun Powell, Lamar Lane Joffrion, Todd Paul Peltier, Kimberly Ann Johnson, Thomas Lamar Flowers, Franklin Eugene Caputo, Hubert Willem Schenck, Andries Quinn Boon, Molly Gilchrest
  • Patent number: 9637421
    Abstract: An object of the present invention is to provide a process for producing an octadiene from 2,7-octadienyl formate in an industrially useful manner in which palladium can maintain its catalytic activity for a long period of time. More specifically, the present invention relates to a process for producing an octadiene which includes the steps of continuously adding 2,7-octadienyl formate into a reaction system in which a mixture of a palladium compound, a tertiary organophosphorus compound and a solvent is present; and subjecting the 2,7-octadienyl formate to reaction while continuously distilling off a reaction product containing the resulting octadiene out of the reaction system.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: May 2, 2017
    Assignee: KURARAY CO., LTD.
    Inventors: Osamu Nakayama, Junichi Fuji, Masaki Shimizu
  • Patent number: 9631146
    Abstract: Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 25, 2017
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Gregg T. Beckham, Mary J. Biddy, Stephen C. Chmely, Matthew Sturgeon
  • Patent number: 9598331
    Abstract: Processes for the production of high purity alpha olefins from a mixture of olefins are disclosed. The processes may include: contacting propylene and a hydrocarbon mixture comprising a mixture of olefins having a carbon number n with a first metathesis catalyst to form a metathesis product comprising a beta-olefin having a carbon number n+1, an alpha-olefin having a carbon number n?1, as well as any unreacted propylene and olefins having a carbon number n. The metathesis product may be fractionated to recover a fraction comprising the beta-olefin having a carbon number n+1. Ethylene and the fraction comprising the beta-olefin having a carbon number n+1 may then be contacted with a second metathesis catalyst to form a second metathesis product comprising an alpha-olefin having a carbon number n and propylene, which may be fractionated to form a propylene fraction and a fraction comprising the alpha olefin having a carbon number n.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: March 21, 2017
    Assignee: Lummus Technology Inc.
    Inventors: Bala Ramachandran, Sukwon Choi
  • Patent number: 9598332
    Abstract: In a process for producing para-xylene, a feed comprising a mixture of xylene isomers, olefinic unsaturated contaminants and oxygenate contaminants is supplied to a para-xylene recovery unit to recover para-xylene and produce a para-xylene depleted residual stream. The para-xylene depleted residual stream is then contacted with a xylene isomerization catalyst in a xylene isomerization zone under liquid phase conditions effective to isomerize xylenes and produce an isomerized product having a higher para-xylene content than the para-xylene depleted residual stream. The isomerized product is then recycled to the para-xylene recovery unit. At least one of the feed, the para-xylene depleted residual stream and the isomerized product is contacted with a solid acid catalyst in a treatment zone under conditions effective to reduce the level of olefinic unsaturated contaminants and oxygenate contaminants therein and produce a treated stream.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: March 21, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy P. Bender, Robert G. Tinger
  • Patent number: 9580660
    Abstract: The application describes a process where methane or any short chained hydrocarbon could be catalytically coupled with an oxygenate (preferably derived from thermal processing of biomass) to dehydrate and produce a deoxygenated hydrocarbon. The presence of oxygen in biomass derivatives adversely affects its ability to be further processed into hydrocarbon fuels because the resulting water poisons many catalysts (including alumina containing catalysts, zeolites, etc.) found in petrochemical refineries. While commonly used hydrodeoxygenation methods require expensive hydrogen to instigate deoxygenation, the present process uses short chained hydrocarbons (such as methane or natural gas) to instigate hydrodeoxygenation.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: February 28, 2017
    Assignee: The Texas A&M University System
    Inventors: Sandun Fernando, Duminda Anuradh Gunawardena
  • Patent number: 9573860
    Abstract: The present invention relates to a process to make light olefins, in a combined XTO-OC process, from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: a) providing a catalyst comprising zeolitic molecular sieves containing 10 member and larger channels in their microporous structure, b) providing an XTO reaction zone, an OC reaction zone and a catalyst regeneration zone, said catalyst circulating in the three zones, such that at least a portion of the regenerated catalyst is passed to the OC reaction zone, at least a portion of the catalyst in the OC reaction zone is passed to the XTO reaction zone and at least a portion of the catalyst in the XTO reaction zone is passed to the regeneration zone; c) contacting said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock in the XTO reactor with the catalyst at conditions effective to convert at least a portion of the feedstock to form a XTO reactor effluent comprising light olefins and a h
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: February 21, 2017
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Giacomo Grasso, Sander Van Donk, Wolfgang Garcia
  • Patent number: 9573859
    Abstract: The present invention relates to a process to make light olefins and aromatics, in a combined XTO-OC process, from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: a0) providing a first portion and a second portion of said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock, a) providing a catalyst comprising zeolitic molecular sieves containing at least 10 membered ring pore openings or larger in their microporous structure, b) providing an XTO reaction zone, an OC reaction zone and a catalyst regeneration zone, said catalyst circulating in the three zones, such that at least a portion of the regenerated catalyst is passed to the OC reaction zone, at least a portion of the catalyst in the OC reaction zone is passed to the XTO reaction zone and at least a portion of the catalyst in the XTO reaction zone is passed to the regeneration zone; c) contacting the first portion of said oxygen-containing, halogenide-containing or sulphur-cont
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: February 21, 2017
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Giacomo Grasso, Sander Van Donk, Wolfgang Garcia
  • Patent number: 9567270
    Abstract: A process for isomerizing endo-hydrogenated dicyclopentadiene to form the corresponding exo-isomer using a stable, pumpable liquid aluminum halide catalyst which includes steps of providing a first solution containing a hydrogenated dicyclopentadiene compound that is dissolved in a hydrocarbon solvent, adding a cosolvent to the first solution to form a second solution, adding an aluminum halide to the second solution, and isomerizing the hydrogenated dicyclopentadiene compound in the presence of dissolved aluminum halide which acts as a catalyst to produce the corresponding exo-isomer.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: February 14, 2017
    Assignee: Johann Haltermann Limited
    Inventors: Indresh Mathur, Karel Johannes Kriel, Edward Hirohito Yonemoto