Abstract: In accordance with one or more embodiments of the present disclosure, a multi-stage process for upgrading pyrolysis oil comprising polyaromatic compounds to benzene, toluene, ethylbenzene, and xylenes (BTEX) includes upgrading the pyrolysis oil in a slurry-phase reactor zone to produce intermediate products, wherein the slurry-phase reactor zone comprises a mixed metal oxide catalyst; and hydrocracking the intermediate products in a fixed-bed reactor zone to produce the BTEX, wherein the fixed-bed reactor zone comprises a mesoporous zeolite-supported metal catalyst.
Type:
Grant
Filed:
November 5, 2021
Date of Patent:
March 14, 2023
Assignee:
Saudi Arabian Oil Company
Inventors:
Miao Sun, Sohel K. Shaikh, Ibrahim A. Abba, Noor Al-Mana, Ke Zhang, Zhonglin Zhang
Abstract: A process for the treatment of a light naphtha feedstock that comprises normal paraffins and iso-paraffins may include separating the feedstock into a first iso-paraffin stream and a normal paraffin stream. The separating may be performed with 5A molecular sieves, a pressure of about 1-3 bars, and a temperature of 100-260° C. A product stream may be provided by subjecting the normal paraffin stream to at least one of steam cracking, isomerizing, and aromatizing.
Abstract: According to embodiment, a carbon dioxide capturing system cools a regenerator discharge gas discharged from a regenerator 5 containing carbon dioxide by a cooling unit 8, and then sends the gas to a cleaner 9. The cleaner 9 receives condensed water generated from the regenerator discharge gas cooled by the cooler 9, and a gaseous cooled regenerator discharge gas, and cleans the cooled regenerator discharge gas by a cleaning liquid. The cleaner 9 has a first liquid reservoir 9b configured to store the condensed water, and a second liquid reservoir 9c configured to store the cleaning liquid having cleaned the cooled regenerator discharge gas.
Abstract: Disclosed herein are a calcium salts-supported metal catalyst, a method for preparing the same, and a method for the hydrodeoxygenation reaction of oxygenates using the same. The catalyst, in which a metal catalyst is supported on a carrier of a calcium salt, for example, calcium carbonate, has the effect of increasing the efficiency of hydrodeoxygenation reaction of oxygenates.
Type:
Grant
Filed:
February 11, 2021
Date of Patent:
February 21, 2023
Assignee:
KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
Inventors:
Jeong-Myeong Ha, Adid Adep Dwiatmoko, Jae Wook Choi, Dong Jin Suh, Jungho Jae, Young Hyun Yoon, Kwang Ho Kim
Abstract: In accordance with one or more embodiments of the present disclosure, a multi-stage process for upgrading pyrolysis oil comprising polyaromatic compounds to benzene, toluene, ethylbenzene, and xylenes (BTEX) includes upgrading the pyrolysis oil in a slurry-phase reactor zone to produce intermediate products, wherein the slurry-phase reactor zone comprises a mixed metal oxide catalyst; and hydrocracking the intermediate products in a fixed-bed reactor zone to produce the BTEX, wherein the fixed-bed reactor zone comprises a mesoporous zeolite-supported metal catalyst.
Type:
Grant
Filed:
November 5, 2021
Date of Patent:
February 14, 2023
Assignee:
Saudi Arabian Oil Company
Inventors:
Miao Sun, Sohel K. Shaikh, Ibrahim A. Abba, Noor Al-Mana, Ke Zhang, Zhonglin Zhang
Abstract: Methods of sequestering CO2 from a gaseous source of CO2 are provided. Aspects of the methods include employing an alkali enrichment protocol, such as a membrane mediated alkali enrichment protocol, in a CO2 sequestration protocol. Also provided are systems for practicing the methods.
Type:
Grant
Filed:
December 18, 2020
Date of Patent:
February 14, 2023
Assignee:
Blue Planet Systems Corporation
Inventors:
Brent R. Constantz, Chris L. Camire, Jacob Schneider, Mark Bewernitz
Abstract: Provided in one embodiment is a continuous process for converting waste plastic into recycle for polyethylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a pyrolysis oil and optionally pyrolysis wax comprising a naphtha/diesel fraction and heavy fraction, and char. The pyrolysis oil and wax is passed to a refinery FCC feed pretreater unit. A heavy fraction is recovered and sent to a refinery FCC unit, from which a C3 olefin/paraffin mixture fraction is recovered, which is passed to a steam cracker for ethylene production. In another embodiment, a propane fraction (C3) is recovered from a propane/propylene splitter and passed to the steam cracker.
Abstract: Systems and processes herein improve the conversion of propylene to ethylene via metathesis. On a mass basis, embodiments herein may be used to convert greater than 40% propylene, on a mass basis, to ethylene, such as 43% to 75%, on a mass basis. In one aspect, processes for the conversion of propylene to ethylene herein may include introducing a propylene feed stream to a metathesis reactor, and contacting the propylene with a metathesis catalyst in the metathesis reactor to convert the propylene to ethylene and 2-butene. An effluent from the metathesis reactor may be recovered, the effluent including ethylene, 2-butene, and unconverted propylene. The effluent may then be separated in a fractionation system to recover an ethylene fraction, a propylene fraction, a c4 fraction, and a C5+ fraction. The propylene fraction and the C4 fraction may then be fed to the metathesis reactor to produce additional ethylene.
Abstract: In one embodiment, a carbon dioxide capturing system includes an absorber to absorb CO2 from first gas into lean liquid, and produce rich liquid that is the lean liquid absorbing the CO2 and second gas that is the first gas removing the CO2, and a regenerator to separate third gas including the CO2 from the rich liquid flowing from the absorber, and provide the lean liquid and the third gas. The system further includes a flowmeter to measure a flow rate of the third gas, a liquid level gauge to measure a liquid level of the lean liquid and/or the rich liquid, and a controller to regulate a quantity of heat energy supplied to the regenerator based on the flow rate of the third gas, and regulate a total amount of the lean liquid and the rich liquid in the system based on the liquid level.
Type:
Grant
Filed:
July 27, 2020
Date of Patent:
January 24, 2023
Assignees:
KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
Abstract: The present invention relates to a process for the conversion of a feedstock comprising at least 50 wt % related to the total weight of the feedstock of triglycerides, fatty acid esters and/or fatty acids having at least 10 carbon atoms into hydrogen, olefins, dienes, aromatics, gasoline, diesel fuel, jet fuel, naphtha and liquefied petroleum gas comprising: a) introducing of said feedstock in a first reactor to produce linear paraffins in presence of a hydrodesulfurization catalyst and hydrogen, b) separating the effluent of said first reactor in at least three parts to produce at least a first stream comprising part of said linear paraffins and at least a second stream comprising part of said linear paraffins, and at least a third stream comprising part of said linear paraffins c) sending said first stream to a steam cracker to produce hydrogen, olefins, dienes, aromatics and gasoline, diesel fuel being further fractionated; d) introducing said second stream into a second reactor in presence of a hydrocr
Abstract: Oxidative dehydrogenation (ODH) of alkanes to alkenes, e.g., propane to propylene, may use solid phase oxygen in VOx based mixed oxide catalysts. Beyond catalysis, the metal oxide species provide lattice oxygen. The catalysts can be prepared by depositing vanadium oxide(s) on ?-Al2O3 mixed with various alkaline earth metal oxide support, e.g., CaO, MgO, BaO, etc. Surface area, acidity, and reduction properties of the catalyst systems can be modified by the support. The catalysts may allow multistage reduction of VOx, indicating different VOx species. Vanadium on ?-Al2O3/CaO can suppress COx species, while vanadium on ?-Al2O3/BaO can yield at least ca. 49% olefins.
Type:
Grant
Filed:
October 15, 2019
Date of Patent:
January 10, 2023
Assignee:
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Inventors:
Mohammad Mozahar Hossain, Idris Akolade Bakare, Sagir Adamu
Abstract: Methods for utilizing a supercritical water unit to convert waste plastics to product through hydrothermal treatment in a supercritical unit are provided. Waste plastic is treated in a pretreatment unit, melting the plastic into a liquid and prepares the plastic for the supercritical water unit. The pretreatment unit can dehalogenate the waste plastic. The molten plastic is introduced into a supercritical water unit with water, which generates a product. A flushing stream of product and steam or water from the supercritical water unit is recycled from the supercritical water unit into the pretreatment unit, preheating and pretreating the waste plastic, and acting as a catalyst in the dechlorination reaction. A purge stream removes the products of the dehalogentation reaction occurring in the melting section.
Abstract: Disclosed herein are methods for removing acetylene from an ethylene gas stream wherein a catalyst reacts with the acetylene to polymerize said acetylene forming an ethylene gas stream substantially free of acetylene.
Type:
Grant
Filed:
September 25, 2020
Date of Patent:
January 3, 2023
Assignee:
UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED
Inventors:
Adam S. Veige, Brent S. Sumerlin, Zhihui Miao
Abstract: Described are methods for converting methane to olefins, aromatics, or a combination thereof using a single atom catalyst comprising CeO2 nanoparticles impregnated with individual atoms of noble metals including Pt, Pd, Rh, Ru, Ag, Au, Ir, or a combination thereof. These single atom catalysts of the present invention are heated with methane to form olefins and aromatics.
Abstract: A FCC process including the steps of (a) adding a crude lignin oil (CLO) to a FCC unit, wherein the FCC unit has a FCC riser, a catalyst regenerator and a reactor/stripper, wherein CLO is a crude lignin oil composition including lignin and a polar organic solvent in 1:10 to 1:0.3 w/v ratio, (b) optionally adding a second feed including a conventional FCC feedstock to the FCC unit, (c) adding a regenerated catalyst from the regenerator to the FCC riser for catalytic cracking and upgrading the CLO and second feedstock to produce upgraded products and deactivated catalyst, (d) adding the upgraded products and deactivated catalyst from the FCC riser to the reactor/stripper and separating upgraded products from deactivated catalyst in the reactor/stripper, (e) adding the deactivated catalyst from (d) to the regenerator to regenerate the deactivated catalyst to provide regenerated catalyst; and collecting the upgraded products.
Type:
Grant
Filed:
May 20, 2020
Date of Patent:
December 6, 2022
Assignee:
VERTORO B.V.
Inventors:
Panagiotis Kouris, Michael Dirk Boot, Emiel Jan Maria Hensen
Abstract: A novel catalyst composition and its use in the oligomerization reaction converting a portion of a C4 to C5+ alkene feed stream to C4 to C6+ olefin derivatives. The catalyst comprises a Group VIII metal selected from the group consisting of nickel, iron, cobalt, and combinations thereof, on a support. The support can be silica, silicon dioxide, titanium dioxide, metal modified silica, silica-pillared clays, silica-pillared micas, metal oxide modified silica-pillared mica, silica-pillared tetrasilicic mica, silica-pillared taemolite, zeolite, molecular sieve, and combinations thereof. The catalyst composition is an active and selective catalyst for the catalytic oligomerization of alkenes to olefins and olefin derivatives.
Abstract: Systems and methods for producing propylene using an MTBE synthesis raffinate are disclosed. An MTBE synthesis raffinate stream first passes through a molecular sieve to separate n-butane and isobutane from the rest of C4 hydrocarbons of the MTBE synthesis raffinate. The 1-butene in the rest of C4 hydrocarbons of the MTBE synthesis raffinate is then isomerized to form 2-butene. Therefore, the concentration of 2-butene in the subsequent propylene production process increases due to the separation of n-butane and isobutane and the isomerization of 1-butene, resulting in an improved reaction rate and reaction efficiency for propylene production.
Type:
Grant
Filed:
July 17, 2018
Date of Patent:
November 22, 2022
Assignee:
SABIC GLOBAL TECHNOLOGIES B.V.
Inventors:
Guillermo Leal, Mohammed Bismillah Ansari
Abstract: The present disclosure relates to co-processing at least a fossil-based feed, pyrolysis liquid and a distillation residue from tall oil distillation in an oil refinery conversion process.
Type:
Grant
Filed:
June 28, 2018
Date of Patent:
November 8, 2022
Assignee:
NESTE OYJ
Inventors:
Ville Paasikallio, Blanka Toukoniitty, Jukka-Pekka Pasanen