Patents Examined by Phillip Nguyen
  • Patent number: 8503499
    Abstract: A gas discharge chamber that uses a calcium fluoride crystal which reduces a breakage due to mechanical stress (window holder and laser gas pressure), thermal stress from light absorption, and the like, increases the degree of linear polarization of output laser, and suppresses degradation due to strong ultraviolet (ArF, in particular) laser light irradiation. A first window (2) and a second window (3) of the gas discharge chamber have an incident plane and an emitting plane in parallel with a (111) crystal plane of their calcium fluoride crystal. With respect to an arrangement where laser light entering the calcium fluoride crystal passes through a plane including a <111> axis and a <001> axis of each of the first window (2) and the second window (3) as seen from inside the chamber (1), the first window (2) and the second window (3) are arranged in positions rotated in the same direction by the same angle about their <111> axis.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 6, 2013
    Assignee: Gigaphoton Inc.
    Inventors: Shinji Nagai, Fumika Yoshida, Osamu Wakabayashi, Kouji Kakizaki
  • Patent number: 8488647
    Abstract: The present invention provides a semiconductor light emitting device realizing increased light detection precision by a simple manufacture process. One or more second oxidation layers are provided between an active layer and a semiconductor light detecting element in addition to a first oxidation layer for narrowing current. Since natural emission light includes many divergence components, the natural emission light is reflected and scattered by the second oxidation layer, and propagation of the natural emission light to the semiconductor light detecting element side is suppressed. The detection level of the natural emission light by the semiconductor light detecting element decreases, and light detection precision increases. The first and second oxidation layers are formed by a single oxidizing process so that the manufacturing process is simplified.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 16, 2013
    Assignee: Sony Corporation
    Inventors: Takahiro Arakida, Shiro Uchida, Masaki Shiozaki, Osamu Maeda
  • Patent number: 8483251
    Abstract: Provided is a Group III nitride semiconductor laser diode with a cladding layer capable of providing high optical confinement and carrier confinement. An n-type Al0.08Ga0.92N cladding layer is grown so as to be lattice-relaxed on a (20-21)-plane GaN substrate. A GaN optical guiding layer is grown so as to be lattice-relaxed on the n-type cladding layer. An active layer, a GaN optical guiding layer, an Al0.12Ga0.88N electron blocking layer, and a GaN optical guiding layer are grown so as not to be lattice-relaxed on the optical guiding layer. A p-type Al0.08Ga0.92N cladding layer is grown so as to be lattice-relaxed on the optical guiding layer. A p-type GaN contact layer is grown so as not to be lattice-relaxed on the p-type cladding layer, to produce a semiconductor laser. Dislocation densities at junctions are larger than those at the other junctions.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 9, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yohei Enya, Yusuke Yoshizumi, Takashi Kyono, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Takao Nakamura
  • Patent number: 8472496
    Abstract: A device representing a reflector, for example, an evanescent reflector or a multilayer interference reflector with at least one reflectivity stopband is disclosed. A medium with means of generating optical gain is introduced into the layer or several layers of the reflector. The optical gain spectrum preferably overlaps with the spectral range of the reflectivity stopband. This device can be attached to air, semiconductor or dielectric material or multilayer structures and provide a tool for preferential amplification of the optical waves propagating at larger angles with respect to the interface with the evanescent or the multilayer interference reflector. Thus angle selective amplification or generation of light is possible. Several evanescent or interference reflectors can be used to serve the goal of preferable amplification the said optical waves.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: June 25, 2013
    Assignee: VI Systems GmbH
    Inventor: Nikolay Ledentsov
  • Patent number: 8467429
    Abstract: A laser comprises an end pump light source and a gain medium having a first end, a second end, and four sides comprising a first, a second, a third, and a fourth side. The end pump light source is optically coupled to the first end and pumps the gain medium. The first side and the third side are tapered inwardly from the first end to the first end to the second end at a taper angle ? relative to a longitudinal lasing axis and have a polished finish capable of reflecting light inside the gain medium. The second side and the fourth side are substantially parallel to the longitudinal lasing axis have a ground blasted finish. The first side is also tilted inwardly at a slant angle ? from the fourth side to the second side. A laser beam R0 exits the second end of the gain medium.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: June 18, 2013
    Assignee: Innova, Inc.
    Inventor: M. Cem Gokay
  • Patent number: 8462823
    Abstract: According to one embodiment, the present application includes a tunable laser configured in a small package. The tunable laser includes a housing with a volume formed by exterior walls. An electrical input interface is positioned at the first end of the housing and configured to receive an information-containing electrical signal. An optical output interface is positioned at the second end of the housing and configured to transmit a continuous wave optical beam. A tunable semiconductor laser is positioned in the interior space and operable to emit a laser beam having a selectable wavelength. A focusing lens assembly is positioned in the interior space along an optical path of the laser beam to operatively couple the laser beam to the optical output interface.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: June 11, 2013
    Assignee: Emcore Corporation
    Inventors: Andrew John Daiber, Shengbo Xu, Yinan Wu
  • Patent number: 8446923
    Abstract: When an output instruction is input to the control unit, the control unit controls the seed laser light source and the pumping light source to be either in a pre-pumped state or in an output state. In the pre-pumped state, laser light is not output from the seed laser light source, and pumping light with a predetermined intensity based on a laser light intensity set by the output setting unit is output from the pumping light source for a certain period of time. In the output state, laser light is output from the seed laser light source, and pumping light is output from the pumping light source, so that laser light with the intensity set by the output setting unit is output.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: May 21, 2013
    Assignee: Fujikura Ltd.
    Inventors: Yasuhiro Oba, Michihiro Nakai
  • Patent number: 8432945
    Abstract: In a laser module (310), single-emitter laser diode chips (110) are positioned at different heights on opposite sides of the module's combined output beam (114). Each laser diode chip (110), and its corresponding fast and slow axis collimators (130, 134), and turning mirror (140) are positioned on a corresponding heat-dissipating surface region (340). High thermal stability and output power are obtained in some embodiments even if the modules are combined to obtain higher-level modules (310-2). Other features and embodiments are also provided.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 30, 2013
    Inventor: Victor Faybishenko
  • Patent number: 8428092
    Abstract: A high-power laser unit capable of accurately correcting laser output from low to rated outputs, even when the laser unit has a laser power monitor which may be affected by environmental factors inside or outside the laser unit, by effectively reducing environmental factors. The laser unit has a laser power monitor for measuring laser output, and a laser controller for correcting the laser output by correcting an amount of excitation energy to a laser power supply so that a measurement value coincides with a laser output command value. The laser unit has a laser output commanding part for generating a laser output command. When it is not necessary to correct the laser output command, the laser output command is converted into an excitation energy command value and sent to the power supply. Otherwise, an output correcting part of the laser controller corrects the laser output command.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: April 23, 2013
    Assignee: Fanuc Corporation
    Inventors: Koji Hayano, Atsushi Mori, Yuji Nishikawa
  • Patent number: 8428094
    Abstract: A surface-emitting semiconductor laser is described, with a semiconductor chip (1), which has a substrate (2), a DBR-mirror (3) applied to the substrate (2) and an epitaxial layer sequence (4) applied to the DBR mirror (3), said layer sequence comprising a radiation-emitting active layer (5), and with an external resonator mirror (9) arranged outside the semiconductor chip (1). The DBR mirror (3) and the substrate (2) are partially transmissive for the radiation (6) emitted by the active layer (5) and the back (14) of the substrate (2) remote from the active layer (5) is reflective to the emitted radiation (6).
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 23, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hans Lindberg, Stefan Illek
  • Patent number: 8422527
    Abstract: A nitride based semiconductor device includes: an n-type cladding layer; an n-type GaN based guide layer placed on the n-type cladding layer; an active layer placed on the n-type GaN based guide layer; a p-type GaN based guide layer placed on the active layer; an electron block layer placed on the p-type GaN based guide layer; a stress relaxation layer placed on the electron block layer; and a p-type cladding layer placed on the stress relaxation layer, and the nitride based semiconductor device alleviates the stress occurred under the influence of the electron block layer, does not affect light distribution by the electron block layer, reduces threshold current, can suppress the degradation of reliability, can suppress degradation of the emitting end surface of the laser beam, can improve the far field pattern, and is long lasting, and fabrication method of the device is also provided.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 16, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Daisuke Nakagawa, Yoshinori Tanaka, Masahiro Murayama, Takao Fujimori, Shinichi Kohda
  • Patent number: 8422531
    Abstract: A surface emitting semiconductor laser includes a substrate, an n-type lower DBR, an n-type cavity extending region formed on the lower DBR, an active region formed on the cavity extending region, and an upper DBR formed on the active region. A difference in refractive index between a relatively high refractive index layer and a relatively low refractive in the upper DBR is smaller than that in the lower DBR.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 16, 2013
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Takashi Kondo
  • Patent number: 8416828
    Abstract: An array of discrete catalyst elements is contained in a heated module external to the main laser vessel with an auxiliary gas flow loop connecting them so as to provide independent control of catalyst temperature and gas flow rate to achieve high CO+1/2O2 to CO2 recombination under high pulse repetition frequency operation for a sealed laser. Catalyst elements in the form of cylinders with holes through their centers are mounted on multiple parallel rods or catalysts in the form of small spherical or cylindrical elements are contained in multiple packets arranged in the module so as to minimize flow impedance and maximize laser gas recycling throughput. The cylindrical catalyst module is constructed so as to allow for rapid heating to operating temperature while withstanding atmospheric differential pressures during laser processing.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: April 9, 2013
    Assignee: DBC Technology Corp.
    Inventor: David B. Cohn
  • Patent number: 8406265
    Abstract: An optoelectronic component (1) is specified, comprising a semiconductor body (2) with a semiconductor layer sequence. The semiconductor layer sequence of the semiconductor body (2) comprises a pump region (3) provided for generating a pump radiation and an emission region (4) provided for generating an emission radiation. The emission region (4) and the pump region (3) are arranged one above the other. The pump radiation optically pumps the emission region (4) during operation of the optoelectronic component (1). The emission radiation emerges from the semiconductor body (2) with the semiconductor layer sequence in a lateral direction during operation of the optoelectronic component (1).
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: March 26, 2013
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Matthias Sabathil, Peter Brick, Christoph Eichler
  • Patent number: 8406261
    Abstract: A laser driving device includes: a pulse signal generating unit that, after a voltage has risen from a predetermined reference voltage to a predetermined output voltage and a time of a sum of an oscillation period of relaxation oscillation and a light emission start time in a predetermined laser diode has nearly elapsed, generates a pulse signal having a waveform that falls divisionally in two or more stages from the output voltage to the reference voltage; and an output unit that generates a laser drive signal by performing signal processing on the pulse signal and outputs the signal to the laser diode.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: March 26, 2013
    Assignee: Sony Corporation
    Inventors: Goro Fujita, Tsutomu Maruyama, Seiji Kobayashi
  • Patent number: 8385377
    Abstract: A semiconductor laser device includes a semiconductor laser element configured to emit a fundamental wave; a transducer configured to receive the fundamental wave incident thereon and convert a wavelength of the fundamental wave to emit wavelength converted light; a filter configured to selectively transmit wavelength range light having a desired wavelength range of the wavelength converted light; a sealing member including a light-transmitting member and configured to enclose the semiconductor laser element, the light-transmitting member being configured to receive the wavelength range light transmitted through the filter and incident on the light-transmitting member, specularly reflect part of the wavelength range light, and substantially transmit the remaining part of the wavelength range light; and a photoreceptor configured to receive the specularly reflected light from the light-transmitting member.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: February 26, 2013
    Assignee: Alps Electric Co., Ltd.
    Inventors: Kazuhiro Soejima, Takuya Nagai, Toru Yoshida
  • Patent number: 8379684
    Abstract: Light emitting devices are provided comprising an active region interposed between n-type and p-type sides of the device and a hole blocking layer interposed between the active region and the n-type side of the device. The active region comprises an active MQW structure and is configured for electrically-pumped stimulated emission of photons in the green portion of the optical spectrum. The n-type side of the light emitting device comprises an n-doped semiconductor region. The p-type side of the light emitting device comprises a p-doped semiconductor region. The n-doped semiconductor region comprises an n-doped non-polar or n-doped semi-polar substrate. Hole blocking layers according to the present disclosure comprise an n-doped semiconductor material and are interposed between the non-polar or semi-polar substrate and the active region of the light emitting device. The hole blocking layer (HBL) composition is characterized by a wider bandgap than that of the quantum well barrier layers of the active region.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: February 19, 2013
    Assignee: Corning Incorporated
    Inventors: Rajaram Bhat, Dmitry S. Sizov, Chung-En Zah
  • Patent number: 8369372
    Abstract: A laser device includes a substrate, a lower cladding layer on the substrate, an active layer on the lower cladding layer, an upper cladding layer on the active layer, and a second order diffraction grating in a layer above the active layer and having dimensions of at least 100 ?m by 100 ?m. The second order diffraction grating diffracts and directs light generated in the active layer in a direction generally perpendicular to the longitudinal direction of the upper cladding layer. A laser device further includes a first reflective film on a first end face of a resonator, and a second reflective film on a second end face of the resonator, the second end face being located at the opposite end of the resonator to the first end face.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: February 5, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takashi Motoda
  • Patent number: 8358673
    Abstract: According to the concepts of the present disclosure, laser diode waveguide configurations are contemplated where the use of Al in the waveguide layers of the laser is presented in the form of InGaN/Al(In)GaN waveguiding superstructure comprising optical confining wells (InGaN) and strain compensating barriers (Al(In)GaN). The composition of the optical confining wells is chosen such that they provide strong optical confinement, even in the presence of the Al(In)GaN strain compensating barriers, but do not absorb lasing emission. The composition of the strain compensating barriers is chosen such that the Al(In)GaN exhibits tensile strain that compensates for the compressive strain of InGaN optical confinement wells but does not hinder the optical confinement.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 22, 2013
    Assignee: Corning Incorporated
    Inventors: Rajaram Bhat, Dmitry S. Sizov, Chung-En Zah
  • Patent number: 8351476
    Abstract: A system and methods for the quasi-remote compression and focusing of a moderate-intensity laser pulse to form a much higher intensity beam that can be directed at a target and used as a probe beam or used in a probe beam converter to generate other forms of electromagnetic radiation or energetic particles. A system for the quasi-remote propagation of high-intensity laser beams in accordance with the present invention comprises a main platform on which a first, “seed” laser pulse is generated, stretched, and amplified, and a remote platform, located at a distance from the main platform, which is configured to receive the amplified and stretched pulse and convert it into the high-intensity laser beam. The high-intensity laser beam in turn can then be converted into one or more probe beams directed at a target object.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: January 8, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Richard F. Hubbard, Antonio C. Ting, Joseph R. Peñano, Daniel F. Gordon, Phillip A. Sprangle, Bahman Hafizi, Arie Zigler