Patents Examined by Queenie Dehghan
  • Patent number: 8464556
    Abstract: Method of making a microstructured optical fiber. Silica glass based soot is deposited on a substrate to form at least a portion of an optical fiber preform by traversing a soot deposition burner with respect to said substrate at a burner traverse rate greater than 3 cm/sec, thereby depositing a layer of soot having a thickness less than 20 microns for each of a plurality of burner passes. At least a portion of the soot preform is then consolidated inside a furnace to remove greater than 50 percent of the air trapped in said soot preform, said consolidating taking place in a gaseous atmosphere containing krypton, nitrogen, or mixtures thereof under conditions which are effective to trap a portion of said gaseous atmosphere in said preform during said consolidation step, thereby forming a consolidated preform which when viewed in cross section will exhibit at least 50 voids therein.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: June 18, 2013
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Robert Brett Desorcie, Mark Alan McDermott, Pushkar Tandon
  • Patent number: 8448468
    Abstract: A mask for laser sealing a temperature and environmentally sensitive element, such as an OLED device, surrounded by a frit wall between first and second substrates. The mask is opaque and has a transparent elongate transmission region. The width of the transmission region may be substantially equal to the width of the frit wall. A strip of opaque mask material extends approximately along a longitudinal center line of the elongate transmission region. The mask is located between a laser and the first or second substrate. The laser emits a generally circular beam having a diameter that is larger than the width of the frit wall and is directed through the transmission region in the mask, such that opaque portions of the mask block portions the laser beam and the transparent transmission region allows a portion of the laser beam to pass through the mask and impinge upon the frit wall to melt the frit wall, thereby joining the first and second substrates and hermetically sealing the element therebetween.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: May 28, 2013
    Assignee: Corning Incorporated
    Inventors: Michelle Nicole Haase Pastel, Brian Paul Strines
  • Patent number: 8443630
    Abstract: A method for manufacturing a primary preform for optical fibers using an internal vapor deposition process, including the steps of: i) providing a hollow glass substrate tube having a supply side and a discharge side, ii) surrounding at least part of the hollow glass substrate tube by a furnace, iii) supplying a gas flow, doped or undoped, of glass-forming gases to the interior of the hollow glass substrate tube via the supply side thereof, iv) creating a reaction zone in which conditions such that deposition of glass will take place on the interior of the hollow glass tube are created, and v) moving the reaction zone back and forth in longitudinal direction over the hollow glass substrate tube between a reversal point located near the supply side and a reversal point located near the discharge side of the hollow glass substrate tube.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: May 21, 2013
    Assignee: Draka Comteq, B.V.
    Inventors: Igor Milicevic, Mattheus Jacobus Nicolaas Van Stralen, Johannes Antoon Hartsuiker, Eugen Aldea, Eric Aloysius Kuijpers
  • Patent number: 8443631
    Abstract: A method of making an optical fiber includes the steps of: providing an optical fiber preform; heating an end portion of the optical fiber preform so as to obtain a softened preform end portion; drawing the softened preform end portion to form the optical fiber; applying to the optical fiber a substantially sinusoidal spin having a spin amplitude and a spin period, the substantially sinusoidal spin being transmitted to the softened preform end portion, and determining an actual spin amplitude applied to the fiber, wherein the actual spin amplitude is the spin amplitude applied in correspondence to the softened preform end portion. The spin amplitude and spin period of the substantially sinusoidal spin are selected in such a way that a ratio of the actual spin amplitude to the spin period is in the range of approximately 0.8 to approximately 1.4 turns/m2.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: May 21, 2013
    Assignee: Prysmian S.p.A.
    Inventors: Davide Sarchi, Maddalena Ferrario
  • Patent number: 8438876
    Abstract: As a precursor to forming a glass sheet, a soot layer is formed on a deposition surface using a roll-to-roll glass soot deposition process. A soot layer-separating device is configured to bring a stream of gas into contact with at least a portion of a free surface of the soot layer. The impinging gas stream affects local thermal expansion stresses at the soot layer/deposition surface interface, which separates the soot layer from the deposition surface.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 14, 2013
    Assignee: Corning Incorporated
    Inventor: Douglas Miles Noni, Jr.
  • Patent number: 8424342
    Abstract: A method for melting inorganic materials, preferably glasses and glass-ceramics, in a melting unit with cooled walls is provided. The method includes selecting the temperature of at least one region of the melt is selected in such a way as to be in a range from Teff?20% to Teff+20%, where the temperature Teff is given by the temperature at which the energy consumption per unit weight of the material to be melted is at a minimum, with the throughput having been selected in such a way as to be suitably adapted to the required residence time.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: April 23, 2013
    Assignee: Schott AG
    Inventors: Werner Kiefer, Hildegard Römer, Frank-Thomas Lentes, Guido Räke, Volker Ohmstede, Karin Naumann, Michael Leister, Gerhard Nuessle, Erich Rodek, Wolfgang Schmidbauer
  • Patent number: 8418502
    Abstract: The present invention relates to a heating apparatus for glass-sheet-forming, which prevents formation of a heater distortion in a portion of a glass sheet facing to a temperature-distributing heat shield.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: April 16, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Tatsuo Yajima, Akira Sugahara, Hiroshi Yamakawa, Akio Imaichi
  • Patent number: 8418503
    Abstract: A sheet glass that has a side surface with an average surface roughness equal to or less than 0.2 ?m is provided. Furthermore, a method of manufacturing a sheet glass is provided that includes processing a base-material glass sheet to obtain a sheet glass that has a side surface with an average surface roughness equal to or less than 0.2 ?m. Moreover, a method of manufacturing a sheet glass is provided that includes processing a base-material glass sheet so that an average surface roughness of a side surface becomes equal to or less than a predetermined value according to a section modulus of the sheet glass that is to be manufactured.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 16, 2013
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Toshihiro Nakamura, Sadayuki Toda, Hisashi Koaizawa
  • Patent number: 8402786
    Abstract: A process for producing a synthetic silica glass optical component which contains at least 1×1017 molecules/cm3 and has an OH concentration of at most 200 ppm and substantially no reduction type defects, by treating a synthetic silica glass having a hydrogen molecule content of less than 1×1017 molecules/cm3 at a temperature of from 300 to 600° C. in a hydrogen gas-containing atmosphere at a pressure of from 2 to 30 atms.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: March 26, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Yoshiaki Ikuta, Shinya Kikugawa, Akio Masui, Noriaki Shimodaira, Shuhei Yoshizawa
  • Patent number: 8402793
    Abstract: An exemplary bushing systemutilizes a bushing having a bottom plate having a plurality of holes from which filaments are drawn, and a plurality of support-receiving elements that are each configured to receive an elongated support. The support-receiving elements extend through the bushing generally along a longitudinal axis. A frame supports the bushing and includes a pair of horizontal rails upon which the supports rest. The horizontal rails comprise a treated surface that permits movement of the elongated supports relative to the frame in the longitudinal direction as the bushing expands and contracts due to thermal heating and cooling.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: March 26, 2013
    Assignee: Johns Manville
    Inventors: Alessandro G. Borsa, Jason Blush
  • Patent number: 8402789
    Abstract: A method of producing a thermally stable grating allows the grating to be placed in environments where temperatures reach 1000° C. These gratings may be concatenated so as to form a sensor array. The method requires a step of lowering the characteristic intensity threshold of a waveguide by at least 25%, followed by irradiating the waveguide with femtosecond pulses of light having a sufficient intensity and for a sufficient duration to write the grating so that at least 60% of the grating remains after exposures of at least 10 hours at a temperature of at least 1000° C. Pre-writing a Type I grating before writing a minimal damage Type II grating lowers the characteristic threshold of the waveguide so that a stable low damage type II grating can be written; alternatively providing a hydrogen or deuterium loaded waveguide before writing the grating lowers the characteristic threshold of the waveguide.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: March 26, 2013
    Assignee: Her Majesty the Queen in Right of Canada, as Represented by the Minister of Industry, Through the Communications Research Centre Canada
    Inventors: Christopher W. Smelser, Stephen J. Mihailov, Dan Grobnic, Ping Lu, Robert B. Walker, Gino Cuglietta, Huimin Ding, Xiaoli Dai
  • Patent number: 8402792
    Abstract: A method for manufacturing a primary preform for optical fibers using an internal vapor deposition process, including the steps of: i) providing a hollow glass substrate tube having a supply side and a discharge side, ii) surrounding at least part of the hollow glass substrate tube by a furnace, iii) supplying doped or undoped glass-forming gases to the interior of the hollow glass substrate tube via the supply side thereof, iv) creating a reaction zone in which conditions such that deposition of glass will take place on the interior of the hollow glass tube are created, and v) moving the reaction zone back and forth along the length of the hollow glass substrate tube between a reversal point located near the supply side and a reversal point located near the discharge side of the hollow glass substrate tube, wherein, during at least part of step v), the gas flow comprises a first concentration of fluorine-containing compound when the reaction zone is moving in the direction of the discharge side.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: March 26, 2013
    Assignee: Draka Comteq B.V.
    Inventors: Igor Milicevic, Mattheus Jacobus Nicolaas Van Stralen, Johannes Antoon Hartsuiker, Eugen Aldea
  • Patent number: 8397540
    Abstract: A deformation apparatus for reforming a glass sheet comprises a central portion, a first edge mold movably coupled to a first end of the central portion and configured to be linearly translated along a linear mold axis in a first direction toward the central portion. The deformation apparatus further includes a second edge mold movably coupled to the second end of the central portion and configured to be linearly translated along the linear mold axis in a second direction opposite the first direction and toward the central portion. Methods are also provided including the step of cooling a reformed glass sheet, wherein a greater shrinkage of the reformed glass sheet relative to a shrinkage of the deformation apparatus is accommodated by a movement of at least the first edge mold in a first direction toward the central portion of the deformation apparatus.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: March 19, 2013
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Paul Delautre, Allan Mark Fredholm, Laurent Joubaud
  • Patent number: 8393176
    Abstract: The present invention relates to a method for manufacturing a glass sheet, the method including: running down molten glass along both side surfaces of a molded body; joining and integrating the molten glass just under a lower edge part of the molded body; and drawing downward and molding an integrated sheet-shaped glass ribbon, in which a guide member which contacts to an end in a width direction of a joined molten glass is provided, and a relative position and/or a relative angle between the guide member and a lower edge of the molded body is/are adjusted.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: March 12, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Masahiro Tsuda, Takashi Mukai, Takeshi Naraki
  • Patent number: 8387417
    Abstract: It is an object of the present invention to uniformly disperse fibrous material such as short glass fibers so as to be distributed on a collection conveyor, without using compressed air for dispersion of the fibrous material. The present invention provides a method for collecting fibrous material, wherein the fibrous material fiberized by a spinner of a fiberizing unit is dispersed by a hollow bucket disposed just under the spinner, so as to be collected on a collection conveyor disposed below the hollow bucket, comprising: forming said hollow bucket by connecting a blasting section having an oval opening at its lower end, with a waistline section as a lower end of a hopper section having a circular shape in cross section, and deforming the inner surface of the blasting section toward said oval opening, thereby dispersing the fibrous material dropped in the hollow bucket in a width direction of the collection conveyor from the blasting section, so as to be collected on the collection conveyor.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: March 5, 2013
    Assignee: Asahi Fiber Glass Company, Limited
    Inventors: Yuji Yokoo, Susumu Kubota, Kazuhiro Kitamura
  • Patent number: 8387416
    Abstract: A method and device for manufacturing a preform for optical fibers through chemical deposition on a substrate for deposition arranged vertically is described, comprising a chemical deposition chamber including at least one gripping member rotatably mounted about an axis Z-Z and adapted to hold at least one end of at least one elongated element constituting a substrate for chemical deposition for the formation of a preform for optical fibers. The chamber includes, moreover, at least one burner which is mobile along a direction Z substantially parallel to said axis Z-Z and adapted to deposit, on said at least one elongated element, a chemical substance for the formation of a preform and at least one suction element for collecting exhaust chemical substances, said at least one suction element being arranged on the opposite side to said at least one burner with respect to said axis Z-Z and being mobile along said direction Z.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: March 5, 2013
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Giacomo Stefano Roba, Massimo Nutini, Marco Ruzzier, Franco Veronelli
  • Patent number: 8381548
    Abstract: A method of manufacturing a photonic band gap fiber base material includes: a forming step of continuously forming a columnar core glass body 10 and a clad glass body 20 which coats the core glass body to obtain an intermediate base material 110; a hole making step of making holes 30 in the clad glass body 20; an insertion step of inserting in the holes 30 a plurality of bilayer glass rods 40 in which an outer layer 42 which has the same refractive index as the clad glass body coats high refractive index portions 41 having a higher refractive index than a refractive index of the clad glass body 20; and a heating step of heating the intermediate base material 110 and integrating the intermediate base material 110 and the bilayer glass rods 40.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: February 26, 2013
    Assignee: Fujikura Ltd.
    Inventor: Katsuhiro Takenaga
  • Patent number: 8381549
    Abstract: The present invention relates to an optical fiber preform fabricating method that makes it possible to implement a reduction in iron impurities at a low cost. The optical fiber preform fabricating method comprises a glass synthesis step for forming a glass region constituting at least a part of the core area of the optical fiber. The glass synthesis step includes a deposition step of depositing glass particles containing the Al-element inside the glass pipe by means of chemical vapor deposition, and a consolidation step of obtaining a transparent glass body from the glass soot body thus obtained. In other words, the deposition step synthesizes glass particles on the inside wall of a glass pipe by feeding raw material gas, in which the content ratio (O/Al) of the O-element and Al-element is 20 or less, into the glass pipe. Furthermore, the consolidation step obtains a transparent glass body from the glass soot body by heating the glass soot body.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: February 26, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuya Nakanishi, Tetsuya Haruna, Shinji Ishikawa
  • Patent number: 8375749
    Abstract: A method for fabricating a porous silica preform includes the steps of supplying fuel gas for generating an oxyhydrogen flame to a glass synthesizing burner; supplying Gas A containing silicon and Gas B containing fluorine to the burner; synthesizing glass particles; and depositing the glass particles around a starting rod, in which when glass particles are deposited directly on the starting rod, a supply of Gas A and a supply of Gas B supplied to the burner are adjusted so that a ratio of the number of fluorine atoms to the number of silicon atoms in the gas supplied to the burner satisfies the following Formula (1): {(number of F atoms)/(number of Si atoms)}?0.1??(1).
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: February 19, 2013
    Assignee: Fujikura Ltd.
    Inventors: Kentaro Ichii, Takakazu Gotoh, Naritoshi Yamada, Koichi Harada
  • Patent number: 8371142
    Abstract: The present invention relates to a system for manufacturing fibres comprising a melting furnace, a crucible within said furnace comprising at least one orifice (6) and at least one induction coil (4) for heating the melting furnace and the crucible. In a typical system according to the invention, the crucible comprises at least a first part (1) made of graphite and comprising said at least one orifice (6). The invention also relates to the use of the system as well as to a method for manufacturing fibres and to said fibres.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: February 12, 2013
    Assignees: Purac Biochem bv, Photonium Oy
    Inventors: Tiina Nypelö, Ali Harlin, Leena Hupa, Fredrik Ollila, Erik Vedel, Risto Widerholm