Patents Examined by R. Bruce Breneman
  • Patent number: 5935877
    Abstract: A plasma etch process for an insulating layer, such as silicon dioxide, overlaying a silicide layer having a high selectivity with respect to the silicide layer is disclosed, comprising the use of a mixture of a nitrogen-containing gas and one or more other fluorine-containing etch gases in an etch chamber maintained within a pressure range of from about 5 millitorr to about 400 millitorr. The high selectivity exhibited by the etch process of the invention permits operation of the etch process at reduced pressures of from as low as 5 millitorr to about 30 millitorr to achieve complete etching of vertical sidewall openings in the oxide layer with significant overetch capability.
    Type: Grant
    Filed: September 1, 1995
    Date of Patent: August 10, 1999
    Assignee: Applied Materials, Inc.
    Inventor: Luc Van Autryve
  • Patent number: 5928969
    Abstract: An ammonia-based etchant is employed, in dilute aqueous solution and preferably with a moderating agent, to etch polysilicon. Ammonium fluoride and ammonium hydroxide are the preferred etchants, with acetic acid and isopropyl alcohol the preferred moderating agents for use with the respective etchants. Dilute solutions of these etchants and their respective moderating agents provide a controllable, uniform polysilicon etch with reasonably good selectivity to undoped polysilicon over doped polysilicon. A dilute solution of ammonium fluoride and acetic acid provides particularly good selectivity. These etchants are applied to the etching of doped polysilicon upon which undoped hemispherical grain (HSG) polysilicon has been formed. The undoped HSG polysilicon is etched at a slower rate than the doped polysilicon which is etched at a greater but controllable and uniform rate. The result is a surface with greater total surface area contained within the same wafer area.
    Type: Grant
    Filed: January 22, 1996
    Date of Patent: July 27, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Li Li, Richard C. Hawthorne
  • Patent number: 5928527
    Abstract: A method for producing stable atmospheric pressure glow discharge plasmas using RF excitation and the use of said plasmas for modifying the surface layer of materials. The plasma generated by this process and its surface modification capability depend on the type of gases used and their chemical reactivity. These plasmas can be used for a variety of applications, including etching of organic material from the surface layer of inorganic substrates, as an environmentally benign alternative to industrial cleaning operations which currently employ solvents and degreasers, as a method of stripping paint from surfaces, for the surface modification of composites prior to adhesive bonding operations, for use as a localized etcher of electronic boards and assemblies and in microelectronic fabrication, and for the sterilization of tools used in medical applications.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: July 27, 1999
    Assignee: The Boeing Company
    Inventors: Kin Li, Minas Tanielian
  • Patent number: 5928963
    Abstract: A contact hole is formed in an SiO.sub.2 film on a silicon wafer by a plasma etching, using a photoresist as a mask. A process gas is a mixture of an etching gas of HFPO and a carrier gas of Ar at a volume ratio of from 1:17.5 to 1:20. The process gas is fed into a process chamber which houses the silicon wafer and is set at a pressure of from 10 mTorr to 100 mTorr. The process gas is turned into plasma by electric discharge, and the SiO.sub.2 film is subjected to etching with the plasma. During the etching, the target surface of the wafer is kept at a temperature of from 50.degree. C. to 100.degree. C.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: July 27, 1999
    Assignee: Tokyo Electron Limited
    Inventor: Akira Koshiishi
  • Patent number: 5925260
    Abstract: Polyimide is used with a semiconductor wafer with a number of dies with circuitry formed thereon. A layer of polyimide is formed on the semiconductor wafer. The wafer is inspected to determine whether the layer of polyimide was formed in a desired pattern. Based on the results of the inspection, the layer of polyimide is removed. A layer of polyimide is removed from a semiconductor substrate with circuitry formed thereon. The semiconductor substrate is provided in a container with a solvent. Energy is introduced to the substrate from a frequency-based energy source. A rinse agent is applied to the substrate.
    Type: Grant
    Filed: January 2, 1997
    Date of Patent: July 20, 1999
    Assignee: Micron Technology, Inc.
    Inventor: Tongbi Jiang
  • Patent number: 5925576
    Abstract: A plug for plugging selected perforations in a carrier assembly used in a chemical mechanical polishing system for polishing semiconductor wafers is disclosed. The plug comprises a pressure-resistant portion; a bottom portion attached to the pressure-resistant portion; and a leak-resistant portion extending from the pressure-resistant portion, dimensioned to fit snugly into the bottom portion.
    Type: Grant
    Filed: August 19, 1998
    Date of Patent: July 20, 1999
    Assignee: ProMOS Technologies, Inc.
    Inventor: Cheng-An Peng
  • Patent number: 5925310
    Abstract: A method of making a perforated silicon carbide product in a shorter time and with less labor work to achieve a lower cost and high yield. Openings 13a, 13b are previously formed in a mold 11, and inserts 14 are inserted into the openings to project toward the inside of the mold. A slurry 15 composed of a mixture of a silicon carbide powder, an organic binder and water is put in the mold to conduct a slip casting molding method whereby a molded green product with perforation 16 is obtained.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: July 20, 1999
    Assignees: Asahi Glass Company Ltd., Pacific Rundum Company Ltd.
    Inventors: Takahiro Nakayama, Nobuo Kageyama, Takashi Chikaso
  • Patent number: 5922125
    Abstract: In order to obtain a thin-film transistor having high characteristics using a metal element for accelerating the crystallization of silicon, a nickel element is selectively added to the surface of an amorphous silicon film (103) in regions (101) and (102) and regions (108) to (110), and a heat treatment is carried out to grow crystals (horizontal growth) in directions parallel to the substrate as indicated by arrows (104) to (107). At this point, the regions (108) to (110) having a width of 5 .mu.m or less serve as stopper regions so that horizontal growth starting from the regions (101) and (102) stops there. In this way, the horizontal growth regions can be formed with high controllability. Then a circuit such as a shift register can be constructed with a region having the same crystal growth form.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: July 13, 1999
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hongyong Zhang
  • Patent number: 5922133
    Abstract: An exclusion ring system for depositing a film with multiple exclusion zones on a substrate in a deposition apparatus having a pedestal for supporting the substrate at different positions. A first exclusion ring is positioned above the substrate and pedestal and extends over a first zone overlying the perimeter of the substrate up to a first inner periphery. A second ring is positioned between the first ring and the substrate and extends over a second zone overlying the perimeter of the substrate outwardly of the first zone to a second inner periphery lying outwardly of the first inner periphery. When the pedestal is in a raised position, it supports the rings. When the pedestal is in a lowered position, the rings are supported by legs resting on a stationary wall, the legs of the first ring being effectively longer than the legs of the second ring so that the rings are sequentially moved away from the substrate as the pedestal is lowered.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: July 13, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Avi Tepman, James van Gogh
  • Patent number: 5919310
    Abstract: A continuous film-forming apparatus includes a plurality of reaction chambers each capable of forming a semiconductor film with a different chemical composition. The reaction chambers are arranged such that a substrate web on which a film is to be formed can be hermetically moved through each of the reaction chambers under a vacuum condition. A gas gate is disposed at a central position between each pair of adjacent reaction chambers, with each gas gate provided with a slit for communication between the adjacent reaction chambers.
    Type: Grant
    Filed: February 29, 1996
    Date of Patent: July 6, 1999
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Fujioka, Shotaro Okabe, Masahiro Kanai, Takehito Yoshino, Akira Sakai, Tadashi Hori
  • Patent number: 5916365
    Abstract: The present invention provides for sequential chemical vapor deposition by employing a reactor operated at low pressure, a pump to remove excess reactants, and a line to introduce gas into the reactor through a valve. A first reactant forms a monolayer on the part to be coated, while the second reactant passes through a radical generator which partially decomposes or activates the second reactant into a gaseous radical before it impinges on the monolayer. This second reactant does not necessarily form a monolayer but is available to react with the monolayer. A pump removes the excess second reactant and reaction products completing the process cycle. The process cycle can be repeated to grow the desired thickness of film.
    Type: Grant
    Filed: August 16, 1996
    Date of Patent: June 29, 1999
    Inventor: Arthur Sherman
  • Patent number: 5913978
    Abstract: A gas is supplied to a second chamber so that the pressure in the second chamber is raised to a predetermined level. A communication passage is provided for internally connecting the first and second chambers. When the pressure in the first chamber attains the predetermined level, the gas is allowed to flow from the second chamber into the first chamber through the communication passage. A gas flow can be checked when an open-close door is opened to connect the chambers. Thus, there is no substantial gas flow, so that particles can be prevented from being flung up.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: June 22, 1999
    Assignees: Tokyo Electron Ltd., Varian Japan K.K.T
    Inventors: Susumu Kato, Masahito Ozawa, Sunao Muraoka
  • Patent number: 5911832
    Abstract: Method and apparatus for treating a workpiece implantation surface by causing ions to impact the workpiece implantation surface. An implantation chamber defines a chamber interior into which one or more workpieces can be inserted and includes a conductive inner wall portion in proximity to the chamber interior. A conductive workpiece support extends into an interior region of the implantation chamber. A conductive electrode is disposed within said implantation chamber relative to said conductive workpiece support to allow workpieces to be placed on the workpiece support in a region between the support and the conductive electrode. Gas molecules are injected into the implantation chamber to cause the gas molecules to occupy a region of the implantation chamber in close proximity to the one or more workpieces. The gas molecules are ionized near an implant surface of the workpieces.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: June 15, 1999
    Assignee: Eaton Corporation
    Inventors: A. Stuart Denholm, Jiqun Shao
  • Patent number: 5911907
    Abstract: A composition and method for stripping tin or tin-lead alloys, and any underlying copper-tin intermetallic, from a copper surface. The composition includes an aqueous solution of approximately 5-60% nitric acid by weight, approximately 0.5-30% ferric nitrate by weight, and a nitric acid stabilizer selected from the group consisting of an amino-triazole, an amino-isoxazole, and a linear amino sulfone in the form H.sub.2 N--SO.sub.2 --R, where R is any alkyl or benzene group, wherein the stabilizer is present at a concentration sufficient to inhibit exothermic conditions, emission of toxic NOx gas, and copper attack. A soluble source of halogen ion, such as hydrochloric acid, can be added to the composition to yield a uniform, reflective, bright pink copper appearance, and to further reduce sludge formation. In addition, sludge formation can be eliminated by adding a soluble source of sulfate ion (SO.sub.4.sup.-2) to the composition.
    Type: Grant
    Filed: August 30, 1995
    Date of Patent: June 15, 1999
    Assignee: Surface Tek Specialty Products, Inc.
    Inventor: Scott Campbell
  • Patent number: 5906684
    Abstract: In a method of holding a substrate and a substrate holding system where, the amount of foreign substances on the back surface of the substrate can be decreased and only a small amount of foreign substances transferred from a mounting table to the substrate. For this purpose, the substrate holding system has a ring-shaped leakage-proof surface providing a smooth support surface on the specimen table corresponding to the periphery of the substrate, a plurality of contact holding portions which bear against the substrate on the specimen table between the corresponding position to the periphery of the substrate and the corresponding position to the center of the substrate, and electrostatic attraction means for fixing the substrate by contacting the back surface of the substrate to the ring-shaped leakage-proof surface and the contact holding portions.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: May 25, 1999
    Assignee: Hitachi, Ltd.
    Inventors: Naoyuki Tamura, Kazue Takahashi, Youichi Ito, Yoshifumi Ogawa, Hiroyuki Shichida, Tsunehiko Tsubone
  • Patent number: 5906683
    Abstract: A method and apparatus for controlling the temperature, maintaining the vacuum integrity and facilitating maintenance of a lid assembly (2) in a wafer processing apparatus. The apparatus comprises a gas distribution plate (42) defining one or more gas distribution holes (50) formed therethrough for passage of process gas(es), and a base plate (10) thermally coupled to the gas distribution plate. The base plate (10) has a gas inlet in communication with the gas distribution holes, a fluid inlet (98) for receiving a coolant fluid and a fluid outlet (102) for discharging the coolant fluid. A fluid passage (94) is formed through portions of the base plate in communication with the fluid inlet and outlet to allow a coolant fluid to flow therethrough and to transfer heat from the gas injection and distribution plates. The base plate is an integral, single piece that minimizes the use of gas seals in the lid assembly and facilitates disassembly and assembly of the lid assembly for cleaning and other maintenance.
    Type: Grant
    Filed: April 16, 1996
    Date of Patent: May 25, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Salvador P. Umotoy
  • Patent number: 5904799
    Abstract: This invention is a hardware modification which permits greater uniformity of etching to be achieved in a high-density-source plasma reactor (i.e., one which uses a remote source to generate a plasma, and which also uses high-frequency bias power on the wafer chuck). The invention addresses the uniformity problem which arises as the result of nonuniform power coupling between the wafer and the walls of the etch chamber. The solution to greatly mitigate the nonuniformity problem is to increase the impedance between the wafer and the chamber walls. This may be accomplished by placing a cylindrical dielectric wall around the wafer. Quartz is a dielectric material that is ideal for the cylindrical wall if silicon is to be etched selectively with respect to silicon dioxide, as quartz it is virtually inert under such conditions.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: May 18, 1999
    Assignee: Micron Technology, Inc.
    Inventor: Kevin G. Donohoe
  • Patent number: 5904859
    Abstract: The specification describes techniques for applying under bump metallization (UBM) for solder bump interconnections on interconnection substrates. The UBM of the invention comprises a Cu, Cu/Cr, Cr multilayer structure. Problems in etching the Cu/Cr layer are overcome using a high pH etchant containing a copper complexing ingredient to prevent passivation of the copper constituent by the chromium etchant solution. With the availability of this etchant the UBM multilayer can be formed using subtractive techniques.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: May 18, 1999
    Assignee: Lucent Technologies Inc.
    Inventor: Yinon Degani
  • Patent number: 5904780
    Abstract: In a plasma etching apparatus, an inactive gas and a reactive gas are supplied from gas spouting holes into a process chamber, and are turned into plasma by means of RF discharge, so that a semiconductor wafer placed on a susceptor is etched by the plasma. An antenna formed of a solenoidal coil is arranged around the side wall of the process chamber, so as to generate an RF inductive electric field in the process chamber. A plurality of barriers are arranged to extend into the skin-depth region of the plasma from the side wall of the process chamber, so as to limit a mean free path of electrons in the skin-depth region. The barriers decrease density of low energy electrons in the skin depth region, so as to suppress progress of dissociation of the reactive gas, thereby obtaining a predetermined etching selectivity.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: May 18, 1999
    Assignee: Tokyo Electron Limited
    Inventor: Masayuki Tomoyasu
  • Patent number: 5902404
    Abstract: A remote source of partially ionized plasma gas having ions and excited neutral atom species therein is provided. A chamber having a metallic outer shell and an inner insulative tube, is operated as a microwave resonant cavity, preferably having a diameter of about one quarter of the operating wavelength. A waveguide couples microwave energy from a source to a slot cut into the metallic outer shell of the cavity. Microwave energy passes through the inner energy transparent tube and excites reactant gases supplied from an input tube. Plasma is conducted from the cavity by a plasma output tube coupled into a processing chamber and controlled pressure pumping system.
    Type: Grant
    Filed: March 4, 1997
    Date of Patent: May 11, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Gary Fong, Irwin Silvestre, Quoc Truong