Patents Examined by Rebecca Lee
  • Patent number: 8685357
    Abstract: The invention relates to a firing support for ceramics formed from a carbon substrate at least partially covered by a coating based on silicon carbide (SiC), said coating additionally adhering to said substrate. The invention also relates to a process for obtaining such a support.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 1, 2014
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Matthias Schumann, Matteo Scalabrino, Kerstin Quellmalz
  • Patent number: 8685314
    Abstract: First and second components, which may be metallic components, are joined together in a process including introducing a sinterable powder between the components, the powder being retained within a receptacle, displacing the second component towards the first component to compress the powder, and subsequently applying heat and pressure to the powder to form a sintered bond.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: April 1, 2014
    Assignee: Rolls-Royce PLC
    Inventors: Stephen Tuppen, Daniel Clark
  • Patent number: 8673209
    Abstract: Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The invention alloy is useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction. The invention alloy may be aged by 2 or 3 step practices while exceeding the SCC requirements for applications for which the invention alloy is primarily intended.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: March 18, 2014
    Assignee: Alcoa Inc.
    Inventors: Gary H. Bray, Dhurba J. Chakrabarti, Diana Denzer, Jen Lin, John Newman, Greg Venema, Cagatay Yanar
  • Patent number: 8673092
    Abstract: An outer member of a constant velocity universal joint suppresses occurrences of cracking in a joining portion and has stable quality. The outer member includes a cup section having track grooves formed therein, and a shaft section having one end coupled to a bottom portion of the cup section. By joining members having different carbon contents and performing induction hardening on the members, a hardening heat-affected portion affected by the induction hardening, a hardening heat-unaffected portion unaffected by the induction hardening, a joining heat-affected portion affected by heat generated during the joining, and a joining heat-unaffected portion unaffected by the heat generated during the joining are formed. A martensitic structure is eliminated from the hardening heat-unaffected portion of the high carbon content member and is the joining heat-affected portion at an end portion including a joining end surface that is to be joined to the low carbon content member.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: March 18, 2014
    Assignee: NTN Corporation
    Inventors: Hiroo Morimoto, Kazuhiko Yoshida
  • Patent number: 8673258
    Abstract: Techniques for manufacturing an enhanced carbon nanotube (CNT) assembly are provided. In one embodiment, a method of manufacturing an enhanced CNT assembly comprises preparing a metal tip, preparing a CNT plus transition-metal colloidal solution, forming a CNT plus transition-metal composite assembly by using the prepared metal tip and CNT plus transition-metal colloidal solution, and growing the CNT plus transition-metal composite assembly.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: March 18, 2014
    Assignee: SNU R&DB Foundation
    Inventors: Yong Hyup Kim, Eui Yun Jang
  • Patent number: 8673052
    Abstract: The present invention provides a process for preparing a tantalum powder with high specific capacity, which process comprising the steps of, in sequence, (1) a first reduction step: mixing tantalum oxide powder and a first reducing agent powder homogenously, and then carrying out reduction reaction in hydrogen and/or inert gas or vacuum atmosphere to obtain a tantalum suboxides powder; (2) a second reduction step: mixing the tantalum suboxides powder obtained from the step (1), in which impurities have been removed, and a second reducing agent powder homogenously, and then carrying out reduction reaction in hydrogen and/or inert gas or vacuum atmosphere to obtain a tantalum powder having high oxygen content; (3) a third reduction step: mixing the tantalum powder having high oxygen content obtained from the step (2), in which impurities have been removed, with a third reducing agent powder homogenously, and then carrying out reduction reaction in hydrogen and/or inert gas or vacuum atmosphere to obtain a tanta
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: March 18, 2014
    Assignee: Ningxia Orient Tantalum Industry Co., Ltd.
    Inventors: Wenfeng Shi, Xueqing Chen, Yong Li, Xudong Xi, Tao Guo
  • Patent number: 8652269
    Abstract: Disclosed herein are a flux and a soldering paste based on the flux. The flux is free from a change in viscosity with age, “skinned surface,” and “rough and crumbling,” and is excellent in printability and solderability. The flux contains, as elements, a resin, a thixo agent, an activator, a solvent and glucopyranosylamine type nanotube. The soldering paste further contains a solder powder. Preferably, the solder powder is free from lead.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: February 18, 2014
    Assignee: Nihon Superior Co., Ltd.
    Inventors: Tetsuro Nishimura, Mitsuhiro Kawahara, Masuml Asakawa, Toshimi Shimizu
  • Patent number: 8641800
    Abstract: A method of alloying an iron majority compound with an oxide is provided. The method may include: heating the iron majority compound to a molten state; adding an oxide containing manganese to the molten iron majority compound; adding slag forming materials and reducers to the molten iron majority compound; controlling the iron majority compound to achieve a desired temperature environment for a desired period of time; and removing slag from the iron majority compound.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: February 4, 2014
    Inventor: Joseph Boston McMahon
  • Patent number: 8623115
    Abstract: The present invention is directed to a precious metal recovery process in which an acid sulfidic feed material is subjected to acid pressure oxidation and an alkaline sulfidic feed material is subjected to alkaline pressure oxidation, with the discharge slurries from the pressure oxidation processes being combined to reduce neutralization requirements prior to precious metal recovery.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 7, 2014
    Assignee: Barrick Gold Corporation
    Inventors: John William Langhans, Jr., Wilson Chung-Yeh Tsu
  • Patent number: 8613808
    Abstract: Metal aluminides are formed by an initial thermal deposition process which forms an intermediary material comprising elemental aluminum and another elemental metal, as well as an oxide of the other metal. The thermally formed intermediary material is subsequently heated to initiate an exothermic reaction which forms the metal aluminide material. The reaction may be initiated by localized or bulk heating of the intermediary material, and may involve reaction between the aluminum and elemental metal as well as a thermite reaction between the aluminum and the metal oxide. The resultant metal aluminide material may be substantially fully dense and may contain oxide strengthening precipitates such as aluminum oxide.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: December 24, 2013
    Assignee: Surface Treatment Technologies, Inc.
    Inventors: Timothy Langan, W. Mark Buchta, David M. Otterson, Michael A. Riley
  • Patent number: 8613374
    Abstract: A fuel tank for a vehicle is made of a cast aluminum alloy and has good ductility and toughness. The cast aluminum alloy is subjected to a heat treatment at a temperature of no less than about 350° C. and no more than about 390° C. to possess a Vickers hardness of about 70 HV or less.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: December 24, 2013
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Toru Kitsunai, Atsushi Hirose
  • Patent number: 8613787
    Abstract: A method for the production of iron from an iron oxide-containing material includes contacting an iron oxide-containing material with a particle size distribution range with a ?90 of less than 2 mm, with a carbon-containing material with a particle size distribution range with a ?90 of less than 6 mm, in a commercial scale reactor at a temperature of between 900° C. and 1200° C. for a contact time sufficient to reduce the iron oxide to iron.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: December 24, 2013
    Assignee: Iron Mineral Beneficiation Services (Proprietary) Limited
    Inventors: Gerard Pretorius, Derek Roy Oldnall
  • Patent number: 8613809
    Abstract: High cleanliness spring steel useful in manufacturing a spring with SiO2-based inclusions being extremely controlled and excellent in fatigue properties is provided. High cleanliness spring steel which is steel containing; C: 1.2% (means mass %, hereafter the same with respect to the component) or below (not inclusive of 0%), Si: 1.2-4%, Mn: 0.1-2.0%, Al: 0.01% or below (not inclusive of 0%), and the balance comprising iron with inevitable impurities, wherein; the total of oxide-based inclusions of 4 or above of L (the large diameter of an inclusion)/D (the short diameter of an inclusion) and 25 ?m or above of D and oxide-based inclusions of less than 4 L/D and 25 ?m or above of L, in the oxide-based inclusions of 25 mass % or above of oxygen concentration and 70% (means mass %, hereafter the same with respect to inclusions) or above of SiO2 content when Al2O3+MgO+CaO+SiO2+MnO=100% is presumed, out of inclusions in the steel, is 20 nos./500 g or below.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: December 24, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomoko Sugimura, Sei Kimura, Koichi Sakamoto, Atsuhiko Yoshida, Takeshi Inoue
  • Patent number: 8613815
    Abstract: An apparatus and method of uniformly heating, rheologically softening, and thermoplastically forming metallic glasses rapidly into a net shape using a rapid capacitor discharge forming (RCDF) tool are provided. The RCDF method utilizes the discharge of electrical energy stored in a capacitor to uniformly and rapidly heat a sample or charge of metallic glass alloy to a predetermined “process temperature” between the glass transition temperature of the amorphous material and the equilibrium melting point of the alloy in a time scale of several milliseconds or less. Once the sample is uniformly heated such that the entire sample block has a sufficiently low process viscosity it may be shaped into high quality amorphous bulk articles via any number of techniques including, for example, injection molding, dynamic forging, stamp forging, sheet forming, and blow molding in a time frame of less than 1 second.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: December 24, 2013
    Assignee: California Institute of Technology
    Inventors: William L. Johnson, Marios D. Demetriou, Joseph P. Schramm
  • Patent number: 8613819
    Abstract: The invention relates to a method for producing quenched components consisting of sheet steel, comprising the following steps: a) shaped parts are formed from sheet steel; b) the end of the shaped part is cut and the sheet steel is optionally punched or provided with a desired hole pattern prior to, during, or after the forming of the shaped part; c) at least some sections of the shaped part are subsequently heated to a temperature that permits the steel material to austenitize; and d) the component is then transferred to a quenching die, where it is subjected to a quenching process, during which the component is cooled and thus quenched by the contact of the quenching die with some sections of the component and the compression of said sections. The invention is characterized in that the component is supported by the quenching die in the vicinity of the positive radii and that some sections of said component are clamped in a secure manner without distortion in the vicinity of the cut edges.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: December 24, 2013
    Assignee: voestalpine Metal Forming GmbH
    Inventor: Robert Vehof
  • Patent number: 8613813
    Abstract: An apparatus and method of uniformly heating, rheologically softening, and thermoplastically forming metallic glasses rapidly into a net shape using a rapid capacitor discharge forming (RCDF) tool are provided. The RCDF method utilizes the discharge of electrical energy stored in a capacitor to uniformly and rapidly heat a sample or charge of metallic glass alloy to a predetermined “process temperature” between the glass transition temperature of the amorphous material and the equilibrium melting point of the alloy in a time scale of several milliseconds or less. Once the sample is uniformly heated such that the entire sample block has a sufficiently low process viscosity it may be shaped into high quality amorphous bulk articles via any number of techniques including, for example, injection molding, dynamic forging, stamp forging, and blow molding in a time frame of less than 1 second.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: December 24, 2013
    Assignee: California Institute of Technology
    Inventors: William L. Johnson, Marios D. Demetriou, Choong Paul Kim, Joseph P. Schramm
  • Patent number: 8613887
    Abstract: Methods of producing metal nanowires, compositions, and articles are disclosed. Such methods allow production of metal nanowires with reproducibly uniform diameter and length, even in the presence of catalyst concentration variation. Such metal nanowires are useful for electronics applications.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: December 24, 2013
    Assignee: Carestream Health, Inc.
    Inventors: David R. Whitcomb, William D. Ramsden, Doreen C. Lynch
  • Patent number: 8613811
    Abstract: The present invention provides a graphene-coated member of a novel structure, and a process for producing such graphene-coated members. A graphene-coated member according to a first invention is a graphene-coated member that has a graphene film on a surface of a metallic base of a desired shape. The base includes carbon in a solid-solution state, and the graphene film is formed from solid-solution carbon precipitated at the base surface.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: December 24, 2013
    Assignee: National Institute for Materials Science
    Inventors: Daisuke Fujita, Keisuke Sagisaka, Keiko Onishi
  • Patent number: 8613806
    Abstract: In the formation of sheet material from molten glass, molten glass is formed in a melting furnace and transported through a precious metal delivery system to the forming apparatus. Disclosed herein is a method to mitigate carbon contamination of individual components of the precious metal delivery system prior to and/or during their use. The method involves positioning an oxygen generating material within portions of a precious metal component, and may comprise one or more heat treating steps of the component in an oxygen-containing atmosphere.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: December 24, 2013
    Assignee: Corning Incorporated
    Inventors: William G. Dorfeld, Susan L. Schiefelbein
  • Patent number: 8613788
    Abstract: The addition of 0.5 to 30 ppm boron and 0.5 to 20 ppm calcium to iridium and the Zr- and Hf-free alloys thereof and rhodium and the Zr- and Hf-free alloys thereof surprisingly increases the creep rupture strength at high temperatures, in particular around 1,800° C.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: December 24, 2013
    Assignee: Heraeus Materials Technology GmbH & Co. KG
    Inventors: Uwe Hortig, Verena Baier, Harald Manhardt, Oliver Warkentin, David Francis Lupton