Patents Examined by Rebecca Lee
  • Patent number: 8858677
    Abstract: A valuable-substance recovery method according to the present invention includes: a solvent peeling step (S3) of dissolving a resin binder included in an electrode material by immersing crushed pieces of a lithium secondary battery into a solvent, so as to peel off the electrode material containing valuable substances from a metal foil constituting the electrode; a filtering step (S4) of filtering a suspension of the solvent, so as to separate and recover the electrode material containing the valuable substances and a carbon material; a heat treatment step (S5) of heating the recovered electrode material containing the valuable substances and the carbon material, under an oxidative atmosphere, so as to burn and remove the carbon material; and a reducing reaction step (S6) of immersing the resultant electrode material containing the valuable substances into a molten salt of lithium chloride containing metal lithium, so as to perform a reducing reaction.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: October 14, 2014
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Toshiya Kakuta, Seiichiro Yamazaki
  • Patent number: 8858874
    Abstract: A ternary nickel eutectic alloy consisting of 4.5 to 11 wt % chromium, 1 to 6 wt % cobalt, 1 to 4 wt % aluminum, 0 to 1.5 wt % titanium, 0 to 3 wt % tantalum, 16 to 22 wt % niobium, 0 to 3 wt % molybdenum, 0 to 4 wt % tungsten, 0 to 1 wt % hafnium, 0 to 0.1 wt % zirconium, 0 to 0.1 wt % silicon, 0.01 to 0.1 wt % carbon, 0 to 0.01 wt % boron and the balance nickel plus incidental impurities.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: October 14, 2014
    Assignee: Rolls-Royce PLC
    Inventors: Sammy Tin, Robert J Mitchell
  • Patent number: 8852356
    Abstract: The invention relates to a method for producing a hot strip from transformation-free ferritic steel, wherein a melt is cast into a roughed strip and the latter is subsequently rolled into a hot strip. For this purpose, it is provided that the melt is cast in a horizontal strip casting facility under conditions of a calm flow and free of bending into a roughed strip in the range between 6 and 20 mm and is subsequently rolled into hot strip having a degree of deformation of at least 50%.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: October 7, 2014
    Assignees: Salzgitter Glachstahl GmbH, SMS Siemag AG
    Inventors: Karl-Heinz Spitzer, Bianca Springub, Joachim Konrad, Hellfried Eichholz, Markus Schäperkötter
  • Patent number: 8845779
    Abstract: The object of the present invention is to provide a process for producing molten iron through the efficient reduction of iron oxide having various chemical compositions and various shapes, or through the efficient melting of scrap iron or reduced iron having various shapes and various chemical compositions, the process being used in cases where the amount of iron necessary per furnace is not so large as in blast furnace processes. Specifically, the present invention provides a process for producing molten iron comprising the steps of: supplying carbon-containing molten iron to a holding container, heating the molten iron using heat of a combustion reaction of a gas mixture containing a fuel gas and a combustion-supporting gas, thereby storing the heat therein, and adding a carbon source and an iron-containing material that contains iron oxide and/or scrap iron to the heated and heat-stored molten iron, thereby converting the iron-containing material to molten iron.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: September 30, 2014
    Assignee: ISTC Co., Ltd.
    Inventor: Teruyoshi Hiraoka
  • Patent number: 8840834
    Abstract: An ultra-high strength steel sheet has a tensile strength of 1400 MPa or higher that can achieve both high strength and good formability and an advantageous method for manufacturing the steel sheet and includes a composition including, on a mass basis C: 0.12% or more and 0.50% or less; Si: 2.0% or less; Mn: 1.0% or more and 5.0% or less; P: 0.1% or less; S: 0.07% or less; Al: 1.0% or less; and N: 0.008% or less, with the balance Fe and incidental impurities. The steel microstructure includes, on an area ratio basis, 80% or more of autotempered martensite, less than 5% of ferrite, 10% or less of bainite, and 5% or less of retained austenite; and the mean number of precipitated iron-based carbide grains each having a size of 5 nm or more and 0.5 ?m or less and included in the autotempered martensite is 5×104 or more per 1 mm2.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: September 23, 2014
    Assignee: JFE Steel Coporation
    Inventors: Hiroshi Matsuda, Reiko Mizuno, Yoshimasa Funakawa, Yasushi Tanaka
  • Patent number: 8828157
    Abstract: A method for producing an aluminum-alloy shaped product, includes a step of forging a continuously cast rod of aluminum alloy serving as a forging material, in which the aluminum alloy contains Si in an amount of 10.5 to 13.5 mass %, Fe in an amount of 0.15 to 0.65 mass %, Cu in an amount of 2.5 to 5.5 mass % and Mg in an amount of 0.3 to 1.5 mass %, and heat treatment and heating steps including a step of subjecting the forging material to pre-heat treatment, a step of heating the forging material during a course of forging of the forging material and a step of subjecting a shaped product to post-heat treatment, the pre-heat treatment including treatment of maintaining the forging material at a temperature of ?10 to 480° C. for two to six hours.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: September 9, 2014
    Assignee: Showa Denko K.K.
    Inventor: Yasuo Okamoto
  • Patent number: 8828117
    Abstract: A method for reducing tundish and ladle nozzle clogging in a steel making process by introducing an additive into molten steel containers used in steel making at predetermined times. The additives introduced are oxides of iron which contain between 10% and 30% of oxygen by weight. By adding the oxides of iron in a controlled manner using a cored wire apparatus, clogs in tundish or ladle nozzles in the steel making process are avoided and the steel flows more smoothly with less interruptions due to clogged nozzles. A preferred embodiment uses oxides of iron contained in a cored wire which can be introduced at a predetermined rate and readily mix with molten steel, provide better distribution of dissolved oxygen in the steel to oxidize inclusions, and facilitate removal of the inclusions before the inclusions can cause nozzle clogging.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: September 9, 2014
    Inventor: Gregory L. Dressel
  • Patent number: 8821612
    Abstract: The present invention relates to a stepwise method for the production of titanium-aluminum compounds and some titanium alloys and titanium-aluminum inter-metallic compounds and alloys. In a first step an amount of aluminum is mixed with an amount of aluminum chloride (AlCl3) and then an amount of titanium chloride (TiCl4) is added to the mixture. The mixture is heated to a temperature of less than 220° C. to form a product of TiCl3, aluminum and AlCl3. In a second step, more aluminum can be added if required, and the mixture heated again to a temperature above 900° C. to form titanium-aluminum compounds. This method results in the production of powdered forms of titanium-aluminum compounds with controllable composition. Suitable reactor apparatus is also described.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: September 2, 2014
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Jawad Haidar, Sabaratnasingam Gnanarajan, John Burton Dunlop
  • Patent number: 8815151
    Abstract: Nanowire preparation methods, compositions, and articles are disclosed. Such methods which reduce metal ions to metal nanowires in the presence complexes comprising metal-metal bonds, are capable of producing long, narrow, nanowires useful for electronics and optical applications.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: August 26, 2014
    Assignee: Carestream Health, Inc.
    Inventor: David R. Whitcomb
  • Patent number: 8815150
    Abstract: Methods of producing metal nanowires, compositions, and articles are disclosed. Such methods allow production of metal nanowires with reproducibly uniform diameter and length, even in the presence of catalyst concentration variation. Such metal nanowires are useful for electronics applications.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: August 26, 2014
    Assignee: Carestream Health, Inc.
    Inventors: David R Whitcomb, William D Ramsden, Doreen C Lynch
  • Patent number: 8815149
    Abstract: A semi-reflective film and reflective film for an optical recording medium, which is made of a silver alloy having a composition consisting of 0.001 to 0.1% by mass of Ca, 0.05 to 1% by mass of Mg, and a remainder containing Ag and inevitable impurities, and a target which is made of a silver alloy having a composition consisting of 0.001 to 0.1% by mass of Ca, 0.05 to 1% by mass of Mg, and a remainder containing Ag and inevitable impurities; and a semi-reflective film for an optical recording medium, which is made of a silver alloy having a composition consisting of 0.05 to 1% by mass of Mg, 0.05 to 1% by mass of one or more of Eu, Pr, Ce and Sm, and a remainder containing Ag and inevitable impurities, and an Ag alloy sputtering target for forming a semi-reflective film for an optical recording medium, which is made of a silver alloy having a composition consisting of 0.05 to 1% by mass of Mg, 0.05 to 1% by mass of one or more of Eu, Pr, Ce and Sm, and a remainder containing Ag and inevitable impurities.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: August 26, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Shozo Komiyama, Gou Yamaguchi, Akifumi Mishima
  • Patent number: 8815146
    Abstract: An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of ??-Ni3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: August 26, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Yukinori Yamamoto, Govindarajan Muralidharan, Michael P. Brady
  • Patent number: 8808451
    Abstract: The invention relates to a reducing agent for the soluble chromate content of cement and to methods for the production thereof, which comprise concentrating an used sulfuric acid, containing iron (II) sulfate, and separating the sulfuric acid from the obtained precipitate which contains iron (II) sulfate.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: August 19, 2014
    Assignee: Crenox GmbH
    Inventors: Michael Vössing, Auer Gerhard, Benno Laubach, Detlef Klein, Werner Schuy, Klaus Köllisch, Erwin Weiss, Werner Bahl, Philip Reese
  • Patent number: 8801877
    Abstract: An austenitic heat resistant alloy, which comprises by mass percent, C: over 0.02 to 0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 28 to 38%, Ni: over 40 to 60%, Co?20% (including 0%), W over 3 to 15%, Ti: 0.05 to 1.0%, Zr: 0.005 to 0.2%, Al: 0.01 to 0.3%, N?0.02%, and Mo<0.5%, with the balance being Fe and impurities, in which the following formulas (1) to (3) are satisfied has high creep rupture strength and high toughness after a long period of use at a high temperature, and further it is excellent in hot workability. This austenitic heat resistant alloy may contain a specific amount of one or more elements selected from Nb, V, Hf, B, Mg, Ca, Y, La, Ce, Nd, Sc, Ta, Re, Ir, Pd, Pt and Ag. P?3/{200(Ti+8.5×Zr)} . . . (1), 1.35×Cr?Ni+Co?1.85×Cr . . . (2), Al?1.5×Zr . . . (3).
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: August 12, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Semba, Hirokazu Okada, Masaaki Igarashi
  • Patent number: 8790574
    Abstract: A thrust bearing for a turbocharger of an internal-combustion engine is made of a copper alloy including a brass matrix and a needle-like Mn—Si-based compound dispersed in the brass matrix. Not less than 50% of the needle-like Mn—Si-based compound dispersed in a region from a surface of a sliding portion of the thrust bearing to a depth of 50 ?m have a major axis extending from the inside of the sliding portion to the surface. The major axis makes an angle of 30° to 150° with the surface of the sliding portion when observed in a sectional view perpendicular to the surface of the sliding portion.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: July 29, 2014
    Assignee: Daido Metal Company, Ltd.
    Inventors: Kazuaki Toda, Satoru Kurimoto, Ryo Sato
  • Patent number: 8771591
    Abstract: A high tarnish resistant silver alloy composition formulated for jewelry and flatware manufacture is provided. In certain implementations, the alloy contains about 92%-97% by weight silver, about 0.25%-3.5% by weight palladium, about 0%-3.5% by weight platinum, about 0%-2.5% by weight gold, about 0.1%-1.0% by weight copper, about 0.5%-3.5% by weight zinc, about 0.1%-1.5% by weight tin, about 0.25%-1.5% by weight indium, about 0.03%-1.1% by weight silicon, about 0%-0.5% by weight germanium, about 0.15%-0.5% by weight gallium, about 0.25%-0.5% by weight cobalt and about 0%-0.5% by weight ruthenium. These unique combinations of elements result in the alloys with the tarnish resistance superior to typical 10K gold alloy.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: July 8, 2014
    Assignee: American Bullion Investment Company, Inc.
    Inventor: Charles Bennett
  • Patent number: 8734603
    Abstract: The invention relates to a method for producing a friction element (3) comprising the steps: providing a metal main body (10), hardening the main body (10) on at least part of its surface (11, 12) in a salt bath, wherein the salt bath hardening is the final method step, and no further processing of the hardened surface (11, 12) is performed. Furthermore, the invention relates to a friction element produced according to this method and a friction component comprising the latter.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: May 27, 2014
    Assignee: Miba Frictec GmbH
    Inventors: Zisis Tsioptsias, Gerhard Hartner
  • Patent number: 8728390
    Abstract: A method of making a permanent magnet includes a step of forming a coating on an alloy powder by physical vapor deposition. The alloy powder includes neodymium, iron, boron and other metals. The coating includes a component selected from the group consisting of dysprosium, terbium, iron, and the alloys thereof. The alloy powder is vibrated during formation of the coating. Finally, a permanent magnet is formed from the coated powder, the permanent magnet having a non-uniform distribution of dysprosium and/or terbium. A method of making a permanent magnet using a vibrating transport belt is also provided.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: May 20, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Yucong Wang
  • Patent number: 8709128
    Abstract: The present invention relates to a process for the direct reduction of iron ore performed by means of a plant comprising a gravitational furnace (2) having at least one iron ore reduction zone (8) in the upper part thereof, and at least one carbon deposition zone (9) and one reduced metal product cooling zone (10) in the lower part thereof, and means for feeding a reducing gas mixture into the reactor in correspondence to the with the reduction zone, means for recycle exhaust or reactor off gas from the reactor to syngas and mixing the recycled gas with natural gas to form a reducing gas mixture.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 29, 2014
    Assignee: Luossavaara-Kiirunavaara AB
    Inventors: Klaus Knop, Sten Ångström
  • Patent number: 8691143
    Abstract: A lead-free solder alloy is provided which has improved impact resistance to dropping even after thermal aging and which is excellent with respect to solderability, occurrence of voids, and yellowing. A solder alloy according to the present invention consists essentially of, in mass percent, (1) Ag: 0.8-2.0%, (2) Cu: 0.05-0.3%, (3) at least one element selected from In: at least 0.01% and less than 0.1%, Ni; 0.01-0.04%, Co: 0.01-0.05%, and Pt: 0.01-0.1%, optionally (4) at least one element selected from Sb, Bi, Fe, Al, Zn, and P in a total amount of up to 0.1%, and a remainder of Sn and impurities.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: April 8, 2014
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Tsukasa Ohnishi, Tokuro Yamaki, Daisuke Soma