Patents Examined by Renee Robinson
  • Patent number: 10570035
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: February 25, 2020
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Patent number: 10569246
    Abstract: A device for mixing fluids for a downflow catalytic reactor (1), having at least one substantially horizontal collector (5) provided with a substantially vertical collection conduit (7) receiving fluids collected by said collector (5); an injector (8) injecting a quench fluid opening into said collection conduit (7); a mixing chamber (9) located downstream of the collector (5) in the direction of movement of the fluids, having an inlet end connected directly to the collection conduit (7) and an outlet end (10) evacuating the fluids; and a pre-distribution plate (11) having a plurality of perforations and at least one riser (13), being located downstream of said mixing chamber (9) in the direction of movement of the fluids; the section of the mixing chamber (9) is a parallelogram and has at least one deflector (15) over at least one of the four internal walls of the mixing chamber (9) with a parallelogram section.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: February 25, 2020
    Assignee: IFP Energies nouvelles
    Inventors: Philippe Beard, Frederic Bazer-Bachi, Cecile Plais, Frederic Augier, Yacine Haroun
  • Patent number: 10563139
    Abstract: Processes for hydrotreating an effluent from a slurry hydrocracking process are described. Different streams are formed from the SHC effluent, and different hydroprocessing conditions are applied to the streams, e.g., more severe conditions are applied to streams which need additional hydroprocessing, while less severe conditions are applied to streams which do not need as much hydroprocessing. Common equipment is shared between different hydroprocessing steps.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: February 18, 2020
    Assignee: UOP LLC
    Inventors: Ping Sun, Hans G. Lefebvre, Grant H. Yokomizo
  • Patent number: 10562789
    Abstract: The present disclosure is drawn to an example evaporation panel, which can include an evaporation shelf that is laterally elongated and horizontally oriented and can include an upper surface and a lower surface. A second evaporation shelf can also be included that is laterally elongated and positioned in parallel beneath the evaporation shelf. The second evaporation shelf can have a second upper surface. The evaporation panel can further include a support column between the first evaporation shelf and the second evaporation shelf. The support column can include a plurality of stacked and spaced apart evaporation fins oriented in parallel with the evaporation shelf.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: February 18, 2020
    Assignee: Ecovap, Inc.
    Inventor: Michael J. Patey
  • Patent number: 10561960
    Abstract: A distillation apparatus and method of more rapidly purifying water, potable spirits and essential oils and more specifically to a unique heat distribution device referred to herein as the flame flow that provides for the contents of the apparatus to reach evaporation temperatures more quickly and maintain temperature to provide better control and more evenly heat the contents of a distillation apparatus.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: February 18, 2020
    Inventor: Jonathan S. Zajac
  • Patent number: 10563134
    Abstract: A catalyst and its use for selectively desulfurizing sulfur compounds present in an olefin-containing hydrocarbon feedstock to very low levels with minimal hydrogenation of olefins. The catalyst comprises an inorganic oxide substrate containing a nickel compound, a molybdenum compound and optionally a phosphorus compound, that is overlaid with a molybdenum compound and a cobalt compound. The catalyst is further characterized as having a bimodal pore size distribution with a large portion of its total pore volume contained in pores having a diameter less than 250 angstroms and in pores having a diameter greater than 1000 angstroms.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: February 18, 2020
    Assignee: SHELL OIL COMPANY
    Inventors: Opinder Kishan Bhan, David Andrew Komar
  • Patent number: 10562790
    Abstract: A wastewater evaporative separation system can include an evaporation panel assembly and a wastewater delivery system. The evaporative panel assembly can include at least 10 individual evaporation panels laterally joined together and fluidly coupled to a body of wastewater. The evaporation panel assembly can be configured for receiving wastewater from the body of wastewater and evaporating water therefrom as the wastewater cascades down the evaporation panel assembly and contaminants generally become more concentrated. The wastewater delivery system can be associated with the body of wastewater and can include a fluid directing assembly delivering wastewater from the body of wastewater to an upper portion of the evaporation panel assembly.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: February 18, 2020
    Assignee: Ecovap, Inc.
    Inventor: Michael J. Patey
  • Patent number: 10556809
    Abstract: The present disclosure evaporation panel systems including a plurality of evaporation panels. The evaporation panels can include a plurality of evaporation shelves that are laterally elongated, vertically stacked, spaced apart from one another, and horizontally oriented; and a plurality of vertical support columns positioned laterally along the plurality of evaporation shelves to provide support and separation to the plurality of evaporation shelves. The evaporation panels can also include a plurality of female-receiving openings which are individually bordered by two evaporation shelves and two support columns; and a plurality of male connectors positioned at lateral ends of both the first evaporation panel and the second evaporation panels. The first evaporation panel and the second evaporation panel can be orthogonally connectable via the male connectors of the first evaporation panel and the female-receiving openings of the second evaporation panel.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: February 11, 2020
    Assignee: Ecovap, Inc.
    Inventor: Michael J. Patey
  • Patent number: 10557842
    Abstract: The invention relates to a method for analysing a blend of two or more hydrocarbon feed streams such as crude oils. These crude oils are blended in a facility such as a refinery. The method assesses the compatibility of a hydrocarbon feed in a blend to calculate the blend stability such that organic deposition is minimised. The method uses all of a plurality of hydrocarbon feeds to be blended for analysis. The method either selects a neat hydrocarbon feed, from a plurality of the hydrocarbon feeds included in a blend, as a titrant, wherein the or each other hydrocarbon in the hydrocarbon feed are used to make a pseudo-blend and titrating the pseudo-blend with said selected neat hydrocarbon feed for a plurality of different blend ratios. Alternatively the method involves preparing a reference hydrocarbon and making a blend from the plurality of hydrocarbon feeds and titrating the blend with the reference hydrocarbon.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: February 11, 2020
    Assignee: Intertek Group PLC
    Inventors: Frederick J. Stubbins, John Wade, Paul Winstone
  • Patent number: 10556810
    Abstract: A water sterilizer powered by solar energy is described. A first check valve allows an increment of untreated water to flow from a reservoir into a boiling chamber where it is heated to boiling, and thus sterilized, by focused solar energy. A second check valve with a higher cracking pressure than the first valve remains closed, holding the increment of untreated water in the boiling chamber until the pressure of steam forces the second valve open, thus evacuating the chamber of now-sterilized water. Once the chamber is evacuated, the second valve automatically closes, and the first valve automatically opens, allowing another incremental sterilizing cycle to begin.
    Type: Grant
    Filed: May 5, 2018
    Date of Patent: February 11, 2020
    Inventor: Blaine Clifford Readler
  • Patent number: 10550336
    Abstract: The present disclosure provides methods and apparatus for catalytic cracking of hydrocarbon feed. The apparatus includes a plurality of stages, wherein hydrocarbon feed is introduced into a bottom stage reactor and flows in an overall upward direction. A reaction catalyst stream is introduced into a top stage reactor and flows in an overall downward direction. In each of the stages, the hydrocarbon feed is allowed to come in contact with the reaction catalyst stream received at the particular stage for cracking of the hydrocarbon feed. The final cracked product stream is obtained at an outlet of the top stage reactor and a final spent catalyst stream is obtained at an outlet of the bottom stage reactor.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: February 4, 2020
    Assignee: BHARAT PETROLEUM CORPORATION LIMITED
    Inventors: Ravi Kumar Voolapalli, Seetaram Chebrolu, Biswanath Saha
  • Patent number: 10550008
    Abstract: A low energy fluid purification system and method of implementation including some embodiments having a vacuum-rated first chamber placed in or near a body of water with higher temperature near the surface and lower temperatures at greater depths. The vacuum-rated first chamber holds a quantity of non-potable water and a low pressure area less than or equal to the water's vapor pressure. Vaporization occurs when the higher temperature surface water is brought into contact with the low pressure area. A tubular vapor transport passage allows the vaporized water to pass to a lower temperature and lower pressure condensation chamber. The lower temperature condensation chamber is cooled by lower temperature water from a selected depth below the surface. As the temperature of the vapor lowers, the vapor will condense. This condensation is collected as a quantity of potable water. Additional embodiments and methods are also provided.
    Type: Grant
    Filed: May 7, 2016
    Date of Patent: February 4, 2020
    Assignee: United States of American, as Represented by the Secretary of the Navy
    Inventors: Craig A MacDougall, Dylan Switzer, Aaron Wiest
  • Patent number: 10544374
    Abstract: A process for reducing haze in a heavy base oil includes: obtaining a first effluent oil by contacting a hydrocarbon feedstock with a first catalyst including a zeolite of the ZSM-12 family; and obtaining a second effluent oil by contacting the first effluent oil with a second catalyst including a zeolite of the ZSM-48 family. A hydroisomerization catalyst system having reduced haze includes: a first catalytic region having a first catalyst disposed therein, the first catalyst including a zeolite of the ZSM-12 family; and a second catalytic region having a second catalyst disposed therein, the second catalyst including a zeolite of the ZSM-48 family. The first catalytic region is disposed upstream of the second catalytic region.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: January 28, 2020
    Assignees: SK Innovation Co., Ltd., SK Lubricants Co., Ltd.
    Inventors: Do Kyoung Kim, Do Woan Kim, Seung Woo Lee, Yoon Kyung Lee, Seon Ju Lim
  • Patent number: 10544372
    Abstract: The present invention relates to a method for obtaining a fraction oil yield from petroleum hydrocarbons in a distillation column, wherein said distillation column comprises a fractionation stage, a vaporization section and a stripping stage from the top to the bottom of the distillation column. The method comprises preheating and sending a feedstock oil of petroleum hydrocarbons through a pressure-feeding system at a pressure of 100-1000 kPa higher than the vaporization section pressure of the distillation column, wherein said preheating is conducted in a heating furnace, wherein said heating furnace has an outlet pressure of 100-1000 kPa higher than the vaporization section absolute pressure, and an outlet temperature of 360-460° C.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: January 28, 2020
    Assignees: RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Zhanzhu Zhang, Junyi Mao, Shuandi Hou, Ya Qin, Qing Yuan, Kejia Xu, Tongwang Zhang, Shaobing Wang, Hongliang Qu, Xiaojin Tang, Zhenxing Zhu, Tao Huang
  • Patent number: 10544051
    Abstract: A system for processing saltwater or brackish water while recovering energy otherwise wasted in electricity generation by a natural gas generator or turbine. Heat in the generator exhaust is used to directly heat and process the water in the saltwater or brackish water into high quality steam, separating the majority of salt and contaminants from the water, and leaving potable water that can be permitted and released to the environment or sold for agricultural or industrial use such as oilfield activities. The system also captures and liquefies CO2 in the generator exhaust.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: January 28, 2020
    Inventor: Joe Lynn Vickers
  • Patent number: 10537883
    Abstract: A single-pot method of producing a hydrodesulfurization catalyst by hydrothermally treating a hydrothermal precursor that includes a silica source, a structural directing surfactant, an aqueous acid solution, and metal precursors that contain active catalyst materials is provided. The hydrodesulfurization catalyst includes a catalyst support having SBA-15 and preferably titanium, wherein the active catalyst materials are homogenously deposited on the catalyst support. Various embodiments of said method and the hydrodesulfurization catalyst are also provided.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: January 21, 2020
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Khalid Alhooshani, Saheed Adewale Ganiyu
  • Patent number: 10526542
    Abstract: Systems and methods of dynamically charging coal in coke ovens related to the operation and output of coke plants including methods of automatically charging a coke oven using a charging ram in communication with a control system to increase the coke output and coke quality from coke plants. In some embodiments, the control system is capable of moving the charging ram in a horizontal first direction, a horizontal second direction and a vertical third direction while charging coal into the oven. In some embodiments, the coal charging system also includes a scanning system configured to scan an oven floor to generate an oven floor profile and/or oven capacity. The scanning system used in combination with the control system allows for dynamic leveling of the charging ram throughout the charging process. In some embodiments, the charging ram includes stiffener plates and support members to increase the mechanical strength of the charging ram and decrease the sag of the charging ram at a distal end.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: January 7, 2020
    Assignee: SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC
    Inventors: John Francis Quanci, Chun Wai Choi, Mark Anthony Ball
  • Patent number: 10519044
    Abstract: Systems for water treatment may include an evaporation unit, wherein the evaporation unit may comprise: a first blower; a spacer, wherein the spacer may be fluidly coupled to the first blower; wherein the evaporation unit may be configured to aerate and evaporate water; and a drying tunnel, wherein the drying tunnel may comprise: a second blower, wherein the second blower may be fluidly coupled to an end of the drying tunnel; a heater coupled to an exterior surface of the drying tunnel; nozzles disposed between the heater and the second blower; and a chamber configured to collect solids; wherein the drying tunnel may be configured to evaporate water.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: December 31, 2019
    Assignee: Noles Intellectual Properties, LLC
    Inventor: Jerry W. Noles, Jr.
  • Patent number: 10519378
    Abstract: The present invention relates to recycling tires and the like utilizing a microwave service controlling the pressure from such a process enables a more even temperature and helps prevent the build-up of explosive gas.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: December 31, 2019
    Assignee: Tread Heads, LLC
    Inventor: Matthew Louis Duncan
  • Patent number: 10518234
    Abstract: Aspects of the invention provide a process for upgrading a hydrocarbon feed. The process includes providing a hydrocarbon feed and a utility fluid. Then selectively extracting from the feed at least a portion of particulates to produce a raffinate and an extract. Third hydroprocessing at least a portion of the raffinate.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: December 31, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Reyyan Koc-Karabocek, Christopher M. Evans, Jeffrey C. Yeh, Teng Xu