Patents Examined by Richard Bueker
  • Patent number: 6923868
    Abstract: This invention relates to an apparatus for electron-ray deposition of a coating on an article. The apparatus comprises a processing chamber with crucibles and electron gun located in the processing chamber and a pre-chamber for loading/unloading cartridges with articles to be coated. The cartridges have a lower fixed conic pinion on a vertical support and are located on a lower cover of a processing chamber. A shaft rotates inside the cartridges which engages an upper running conic pinion of the cartridges.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: August 2, 2005
    Assignee: GBA S.A.
    Inventors: Mikola Grechanyuk, Pavlo Kucherenko
  • Patent number: 6911094
    Abstract: An evaporation apparatus comprises an elongated crucible having an upper opening and storing an evaporation material, an electric heater which covers the upper opening of the elongated crucible, generates heat by causing electric current to flow therein for heating the evaporation material stored in the crucible, and has an opening through which the evaporation material which is vaporized by heating can pass through, and a fixing member for pressing and fixing the electric heater onto the elongated crucible. Further, between the fixing member and the electric heater, an angle member having surface portions respectively fitting onto an edge portion of the upper surface and an upper portion of the side surface of the elongated crucible is provided along the longitudinal direction of the elongated crucible. A pressing force from the fixing member is made to exert onto the electric heater via the angle member to bring the electric heater into close contact with the elongated crucible.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: June 28, 2005
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hirotoshi Iwase, Seizo Kato, Masatoshi Ochiai, Tetsuro Endo
  • Patent number: 6894296
    Abstract: A multi-inlet arc chamber typically used in the emission of electrons from a plasma-forming gas in a plasma flood system. The chamber includes multiple gas inlet openings for flow of the gas into the chamber to increase turbulent flow of the gas in the chamber. Over time, the turbulent-flowing gas tends to contact various points rather than the same point or points on a filament in the chamber, as electrical current flows through the filament and electrons are emitted from the gas typically for the neutralization of positive charges on an ion-implanted semiconductor wafer substrate. Consequently, the filament is less susceptible to burnout and breakage and has an extended lifetime.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: May 17, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventor: Kuo-Hsiung Su
  • Patent number: 6881271
    Abstract: An electric heater is placed so as to cover an upper opening of a crucible. Then, a plurality of angle members are disposed along the side portions of the electric heater and are pressed and fixed by clamps. The clamp includes, at its bottom, a curved portion formed by bending a plate-like spring member into a convex shape, and generates pressing force between the curved portion and corresponding claw portions at the upper edge, thereby clamping the crucible.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: April 19, 2005
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masatoshi Ochiai, Hirotoshi Iwase, Seizo Kato, Tetsuro Endo
  • Patent number: 6872260
    Abstract: With the deposited-film forming apparatus according to the first embodiment of the present invention, the distance between the tubular barrel and the evaporating section can be varied, unlike the prior art deposited-film forming apparatus and hence, the efficient formation of the deposited film on the surface of each of the work pieces accommodated in the tubular barrel and the inhibition of the softening of the formed film can be achieved simultaneously. Therefore, it is possible to inhibit the damaging of the deposited film formed on the surface of each of the work pieces and the production of projections on the deposited film, and to form a deposited film at a high quality in respect of a corrosion resistance and the like and at low cost.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: March 29, 2005
    Assignee: Neomax Co., Ltd.
    Inventors: Takeshi Nishiuchi, Ikuo Shimamoto, Fumiaki Kikui, Yoshimi Tochishita, Kazumitsu Sato
  • Patent number: 6868869
    Abstract: A delivery system and method for vaporizing and delivery of vaporized solid and liquid precursor materials at sub-atmospheric pressures between a heatable vaporization vessel and a processing tool. The system includes a pressure regulator internally positioned within the vaporization vessel and in fluid communication with a downstream mass flow controller to maintain a consistent flow of vaporized source material. The system further comprises introducing a carrier/diluent gas for diluting the vaporized source material before entry into the processing tool. A venturi is positioned directly upstream of the processing tool and provides for mixing of the carrier gas with the vaporized source material while providing the negative pressure required to open the gas pressure regulator within the vaporization vessel.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: March 22, 2005
    Assignee: Advanced Technology Materials, Inc.
    Inventor: W. Karl Olander
  • Patent number: 6842998
    Abstract: A system, method, and apparatus for supplying a gas-liquid vapor to a process tank for performing semiconductor manufacturing. In one aspect, the invention is a method of supplying a gas-liquid vapor to a process tank comprising: supplying a gas stream through at least one hydrophobic tube; exposing the outside surface of the hydrophobic tube to a liquid so that the liquid permeates the hydrophobic tube and enters the gas stream, forming a gas-liquid vapor inside the tube; and transporting the gas-liquid vapor to the process tank. In another aspect, the invention is an apparatus for supplying a gas-liquid vapor to a process tank comprising: at least one hydrophobic tube adapted to carry a gas; and a housing forming a chamber that surrounds the tube, the chamber adapted to receive a liquid that can permeate the tube, forming a gas-liquid vapor.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: January 18, 2005
    Assignee: Akrion LLC
    Inventors: Ismail Kashkoush, Richard Novak, Larry Myland
  • Patent number: 6837939
    Abstract: A thermal physical vapor deposition source for vaporizing compacted pellets of organic materials onto a surface of a substrate in forming a display, including a housing defining a plurality of spaced passages each for receiving compacted pellets, a cover plate over the housing, with a first plurality of openings corresponding to the spaced passages of the housing and an electrical heater structure disposed over the cover plate. The thermal physical vapor deposition source further including an aperture plate, disposed over the electrical heater structure, an electrically insulating spacer member located between the electrical heater structure and an aperture plate, and circuitry for applying current to the electrical heater structure to produce heat sufficient to vaporize the pellets and permit vapor efflux of materials to pass through the cover plate, the heater structure, the electrically insulating spacer member and the aperture plate, onto the substrate.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: January 4, 2005
    Assignee: Eastman Kodak Company
    Inventors: Justin H. Klug, Syamal K. Ghosh, Donn B. Carlton
  • Patent number: 6805916
    Abstract: A tapered profile magnetic field pulsed laser deposition (PLD) system and method for depositing a thin film on a substrate are provided. The system includes a tapered pulsed coil arranged relative to a confinement magnetic device so that the plume discharged from the confinement magnetic device is collected and concentrated by an inwardly tapered surface of the tapered pulsed coil which causes the plume to be deflected towards a substrate on which the charged species are deposited to form the thin film. In yet a further aspect, a device for maintaining cleanliness of an interior of a deposition chamber laser entry window through which a laser beam enters and converges to a target is provided. A plume that is generated when a laser beam ablates the target is ionized as a result of radioactive members such that the ionized plume is deflected toward one of the first members (e.g., metal plates) as opposed to coating the interior of the laser entry window.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: October 19, 2004
    Assignee: Research Foundation of the City University of New York
    Inventor: Fred J. Cadieu
  • Patent number: 6799603
    Abstract: A gas flow controller system includes a support structure and a gas manifold and gas manifold inlet valve located at the support structure. The gas manifold is coupled to one or more injector ports of a reactor by a process gas supply line. The reactor is supported by the support structure. Since the gas manifold and the gas manifold inlet valve are also located at the support structure, the length of the gas manifold and the process gas supply line is relatively short. Due to this relatively short length, process gas within the gas manifold and the process gas supply line is removed in a relatively short time after the flow of process gas to the gas manifold is shut off.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: October 5, 2004
    Assignee: Moore Epitaxial, Inc.
    Inventor: Gary M. Moore
  • Patent number: 6799531
    Abstract: A simple, relatively inexpensive, yet effective PLD method is provided for forming extremely clean films with reduced particulate densities and size. A PLD system is used for producing the thin films and includes a PLD chamber wherein a laser beam ablates a target material creating an ionized plasma plume of ions and electrons which is diverted and deposited onto a substrate using a confinement magnet and a deflection magnet. Each of the confinement magnet and the deflection magnet generates an axial magnetic field which is generally parallel to the laser beam plume ejection direction. The charged constituents of the plume are influenced by the magnetic fields and are thus deflected to the substrate, while the larger atomic clusters and particulates are advantageously not deflected. An electric field can also be used to aid in the deflection of the charged plume species. The electric field can be separately modulated to control the film deposition onto the substrate.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: October 5, 2004
    Assignee: Research Foundation of the City of University of New York
    Inventor: Fred J. Cadieu
  • Patent number: 6712908
    Abstract: Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: March 30, 2004
    Assignee: Midwest Research Institute
    Inventors: Tihu Wang, Theodore F. Ciszek
  • Patent number: 6709524
    Abstract: In order to provide a vapor deposition method for forming an organic thin film, which is advantageous in that a deposition rate can be easily controlled and deposition can be conducted with stable high controllability, there is prepared a crucible which is provided with an opening portion at an upper portion of the body, and a projection in a cone shape on an inner bottom surface of the crucible so as to be opposite to the opening portion. When the crucible is irradiated with an infrared light from the bottom side of the crucible, the light in one region among the infrared light transmits the bottom of the crucible and is then radiated to an organic material contained in the crucible. Therefore, the organic material is heated and vaporized at a desired temperature in the range of about 100 to 400° C. by controlling the irradiation dose of the infrared light.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: March 23, 2004
    Assignee: Sony Corporation
    Inventor: Toshitaka Kawashima
  • Patent number: 6706119
    Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: March 16, 2004
    Assignee: Technologies and Devices International, Inc.
    Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
  • Patent number: 6702897
    Abstract: Apparatuses, systems, and methods are disclosed for providing optical communications. Bragg grating used in the optical components and systems of the present invention are produced by selectively hydrogenating one or more selected sections of an optical waveguide in general, and particularly optical fiber. Selective hydrogenation can be performed by selectively establishing local conditions in a first environment conducive to introducing greater quantities of hydrogen into selected sections than into non-selected sections, which are maintained in a second environment. The extent of selective hydrogenation and the hydrogen concentration difference between selected and non-selected section of the waveguide is a function of the temperature, pressure, and time of exposure established in the first and second environments.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: March 9, 2004
    Assignee: Acme Grating Ventures, LLC
    Inventors: Thomas J. Cullen, Timothy E. Hammon, John M. Stockhausen
  • Patent number: 6692624
    Abstract: The present invention provides a vacuum coating apparatus to produce high quality coatings with a low degree of roughness and a high degree of thickness uniformity. The vacuum coating apparatus comprises a consumable metal cathode coupled to an arc discharge power supply and accommodated in a housing used as an anode, which is electrically coupled to a vacuum chamber and connected to the arc discharge dc power supply, a solenoid disposed on the anode, and an arc striking system connected to an initiation unit. The present invention is suitable for producing coatings based on metals, such as titanium, aluminum, chromium, zirconium, etc., as well as for depositing wear-resistant coatings based on compounds of the above metals, e.g. titanium nitride, aluminum nitride, chromium nitride, zirconium nitride, etc. The coatings may be used to improve life and operating performance of tools and machine parts, and as decorative coatings.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: February 17, 2004
    Assignee: International Technology Exchange, Inc.
    Inventors: Alexandr Yakovlevich Kolpakov, Vitaly Nikolaevich Inkin, Grigory Grigorievich Kirpilenko
  • Patent number: 6682600
    Abstract: A method for controlling the deposition of an organic layer in making an organic light-emitting device includes depositing at a deposition zone organic material forming a layer of the organic light-emitting device and providing a movable sensor which, when moved into the deposition zone and is being coated during the depositing step, provides a signal representing the deposition rate and thickness of the organic material forming the layer. The method also includes controlling the deposition of the organic material in response to the signal to control the deposition rate and thickness of the deposited organic material forming the layer, moving the movable sensor from the deposition zone to a cleaning position, and removing organic material from the movable sensor to permit reuse of the movable sensor.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: January 27, 2004
    Inventors: Michael A. Marcus, Anna L. Hrycin, Steven A. Van Slyke
  • Patent number: 6676756
    Abstract: A technique for more efficiently forming conductive elements, such as conductive layers and electrodes, using chemical vapor deposition. A conductive precursor gas, such as a platinum precursor gas, having organic compounds to improve step coverage is introduced into a chemical vapor deposition chamber. A reactant is also introduced into the chamber that reacts with residue organic compounds on the conductive element so as to remove the organic compounds from the nucleating sites to thereby permit more efficient subsequent chemical vapor deposition of conductive elements.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: January 13, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Weimin Li, Sam Yang
  • Patent number: 6663713
    Abstract: A method and apparatus are disclosed for forming thin polymer layers on semiconductor substrates. In one embodiment, the method and apparatus include the vaporization of stable di-pxylylene, the pyrolytic conversion of such gaseous dimer material into reactive monomers, and the optional blending of the resulting gaseous p-xylylene monomers with one or more polymerizable materials in gaseous form capable of copolymerizing with the p-xylylene monomers to form a low dielectric constant polymerized parylene material. An apparatus is also disclosed which provides for the distribution of the polymerizable gases into the deposition chamber, for cooling the substrate down to a temperature at which the gases will condense to form a polymerized dielectric material, for heating the walls of the deposition chamber to inhibit formation and accumulation of polymerized residues thereon, and for recapturing unreacted monomeric vapors exiting the deposition chamber.
    Type: Grant
    Filed: October 22, 1996
    Date of Patent: December 16, 2003
    Assignee: Applied Materials Inc.
    Inventors: Stuardo A. Robles, Visweswaren Sivaramakrishnan, Bang C. Nguyen, Gayathri Rao, Gary Fong, Vicente Lam, Peter Wai-Man Lee, Mei Chang
  • Patent number: 6660328
    Abstract: A precursor delivery system introduces a multicomponent solid precursor into an evaporator during chemical vapor deposition. The system uses a container having an open bottom with the precursor being placed into the container along with a plurality of beads that do not react with the precursor. The beads, coated with the precursor, exit the container by being transported within the groove of a roller that is rotatably disposed proximate the open bottom of the container and drop out of the groove and into the evaporator with the beads thereby introducing the precursor into the evaporator. A screen is disposed within the evaporator for capturing and retrieving the beads.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: December 9, 2003
    Assignee: Florida State University Research Foundation
    Inventors: Klaus-Herman M. Dahmen, Ilya S. Tchouprakov