Patents Examined by Richard Isla
  • Patent number: 11923713
    Abstract: Various disclosed embodiments include illustrative apparatuses and methods for performing vehicle-to-vehicle and/or vehicle-to-load charging. In an illustrative embodiment, an apparatus includes a multi-function DC power unit and an interface unit configured to perform battery recharging between a donor battery-powered device and a receiver battery-powered device. The interface unit is configured to removably receive the multi-function DC power unit.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: March 5, 2024
    Assignee: Rivian IP Holdings, LLC
    Inventors: Tyler Erikson, Steven Schulz, Kyle Underhill, Silva Hiti
  • Patent number: 11916415
    Abstract: A battery charging apparatus includes a battery compartment having a receptacle that is configured to receive a battery pack. The battery charging apparatus includes a first heat exchange module and/or a second heat exchange module. The first heat exchange module includes a plenum surrounding the receptacle, where the plenum includes a chamber to receive a fluid. The plenum also includes a plurality of flow guides disposed in the chamber to define a variable flow passage for the fluid. The second heat exchange module includes a battery connector and a heat sink thermally coupled to the battery connector. The heat sink is arranged to dissipate thermal energy from the battery pack.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: February 27, 2024
    Assignee: Gogoro Inc.
    Inventors: Yu-Jung Wang, Chen-Hsin Hsu, Chi-Chun Chen
  • Patent number: 11916419
    Abstract: A battery control device includes: a first identification unit configured to acquire an identification voltage which is output according to a type of a battery from the battery and to identify the type of the battery based on the acquired identification voltage; a second identification unit configured to acquire identification information for identifying the type of the battery from the battery and to identify the type of the battery based on the acquired identification information; and an estimation unit configured to estimate the type of the battery based on an identification result from the first identification unit and an identification result from the second identification unit.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: February 27, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Naoya Takahashi
  • Patent number: 11909248
    Abstract: A device in a wireless power system may be operable with a removable accessory such as a case. The device may transmit or receive wireless power through the case while the electronic device is coupled to the case. The case may have a folio shape with a front cover portion that covers the display of the electronic device. The case may have an embedded ferrimagnetic core that relays magnetic flux during wireless power transfer operations. Magnetic alignment structures in the case may position the ferrimagnetic core in the case in a high magnetic flux density region between the power transmitting device and the power receiving device. The ferrimagnetic core relays the magnetic flux between a transmitting coil in the power transmitting device and a receiving coil in the power receiving device. The ferrimagnetic core may be formed in a front portion, a sidewall, or a rear wall of a case.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: February 20, 2024
    Assignee: Apple Inc.
    Inventors: Zelin Xu, Nan Liu, Zaki Moussaoui, Gianpaolo Lisi, Kunal Bhargava, Madhusudanan Keezhveedi Sampath, Matthew J. Chabalko, Robert Scritzky
  • Patent number: 11909242
    Abstract: The invention discloses a high-voltage driver switch system and switching method. The system includes a main control chip module and an energy storage capacitor connected with a battery pack, a drive circuit module, a pre-charge circuit and a charge circuit for charging the energy storage capacitor. The pre-charge circuit is connected with the main control chip module and has a current limit resistor, so as to pre-charge the energy storage capacitor under the control of the main control chip module. The charge circuit is connected with the main control chip module and has an electronic switch module which includes two ends connected respectively with the battery pack and the energy storage capacitor, the battery pack charges the energy storage capacitor when switched-on. The invention reduces the instantaneous start-up current and avoids a high current impact caused by charging the energy storage capacitor by the battery pack directly.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: February 20, 2024
    Assignee: Globe (Jiangsu) Co., Ltd
    Inventors: Zefeng Wei, Biao Li
  • Patent number: 11904721
    Abstract: A method for activating an electrical charging process between an electric vehicle and a charging station. The certificate data for activating the charging process are stored in a server device by an operating device of a user distinct from the motor vehicle, and the operating device transfers the certificate data to a data memory assigned to the motor vehicle in the server device, by a predetermined transfer command, and, before or while the motor vehicle is connected to the charging station for the charging process, a control unit of the motor vehicle sends out access data for accessing the data memory to an activation circuit of the charging station and the activation circuit requests the certificate data from the data memory of the motor vehicle at the server device based on the access data and, if the requested certificate data meet a predetermined permissibility criterion, carries out the charging process.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: February 20, 2024
    Assignee: AUDI AG
    Inventors: Marcel Dietz, Veit Rohrberg
  • Patent number: 11904708
    Abstract: This application is directed to an apparatus for providing electrical charge to a vehicle. The apparatus comprises a driven mass, a generator, a charger, a hardware controller, and a communication circuit. The driven mass rotates in response to a kinetic energy of the vehicle and is coupled to a shaft such that rotation of the driven mass causes the shaft to rotate. The driven mass exists in one of (1) an extended position and (2) a retracted position. The generator generates an electrical output based on a mechanical input coupled to the shaft such that rotation of the shaft causes the mechanical input to rotate. The charger is electrically coupled to the generator and: receives the electrical output, generates a charge output based on the electrical output, and conveys the charge output to the vehicle. The controller controls whether the driven mass is in the extended position or the retracted position in response to a signal received from the communication circuit.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: February 20, 2024
    Inventor: Anthony Macaluso
  • Patent number: 11897354
    Abstract: Provided in this disclosure is a standardized provisioning for an electrical vehicle charging station. A center pad is configured to be moved and placed on a horizontal surface at a desired location. A central junction box is formed in the center pad for receiving a power conduit stub-up and a communications conduit stub-up. The power and communications conduit stub-ups extend vertically above the horizontal surface. A plurality of outer junction boxes are formed in the center pad, each configured to provide a power connection and a communication connection to a respective plurality of electrical charging dispensers. A plurality of raceways extend through the center pad from the central junction box to each of the respective outer junction boxes to provide passageways for the power and communications connections between the stub-ups and the plurality of electrical charging dispensers.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: February 13, 2024
    Assignee: ULLMAN ELECTRIC & TECHNOLOGIES COMPANY
    Inventors: Phillip Soroky, Thomas Grabowski, Michael Roach
  • Patent number: 11894708
    Abstract: Methods and apparatuses are disclosed for adjusting a maximum charge amount of a battery. Batteries have preferred usage parameters, such as charging rates, maximum charge amounts, heat, etc. Throughout a battery's lifespan, it is used in different ways that are outside of these parameters. This slowly degrades the quality of the battery. According to the present disclosure, this usage is monitored and accounted for so as to increase the lifespan of the battery and prevent or reduce further degradation. Specifically, the usage is separated into bins, such as temperature and voltage bins. Each bin is associated with a different weighting factors. The amount of time the battery has spent in each bin is multiplied by the corresponding weighting factors, and these values are summed to provide an overall degradation value of the battery. Charging or other aspects of the battery are then controlled according to this degradation value.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: February 6, 2024
    Assignee: APPLE INC.
    Inventor: Robert J. Hoyt
  • Patent number: 11890951
    Abstract: Various disclosed embodiments include illustrative charging systems, electrical dispensers, dispenser chains, methods of charging a vehicle, and methods of providing charging power to a vehicle. A charging system includes a power cabinet having at least one direct current (DC) power module. The charging system also includes at least one dispenser chain, each dispenser chain being electrically couplable to a respective DC power module. Each dispenser chain includes dispensers that are electrically couplable with each other in series and that are configured to dispense electrical power, each of the dispensers being controllable such that electrical power is dispensable by only one dispenser in its dispenser chain at a time.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: February 6, 2024
    Assignee: Rivian IP Holdings, LLC
    Inventors: Tyler Erikson, Silva Hiti, Kyle Underhill
  • Patent number: 11890959
    Abstract: A vehicle module CPM of an inductive vehicle charging system for charging an on-board energy store, wherein the vehicle charging system includes the CPM and at least one base module GPM arranged in a stationary manner, the CPM having: a monitoring device, a secondary coil, a managing device, and a communication device, the monitoring device and the communication device are each connected to the managing device, the secondary coil is designed to receive energy inductively transmitted by the GPM; the monitoring device is designed to ascertain a state Z(t) of the vehicle in which the CPM is installed and/or of the CPM and to transmit information Jo to the managing device in an event of a specifiable state ZStart, the managing device is designed to transmit software SWCPM stored on the managing device and intended for the GPM to the GPM by the communication device after obtaining the information IO.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: February 6, 2024
    Assignee: BRUSA Elektronik AG
    Inventors: Lukas Böhler, Renato Gartmann
  • Patent number: 11878595
    Abstract: A vehicle-to-vehicle power transfer system for use between a first vehicle and at least a second vehicle. The system includes an electric power system disposed in each of the first and second vehicles configured to provide electrical drive power to a vehicle drive system for propulsion of the associated vehicle and a power transfer system configured to transfer electric power from at least the electric power system of the first vehicle to the electric power system of the second vehicle while the vehicles are in motion or stationary.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: January 23, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Neda Masoud, Al-Thaddeus Avestruz, Chinedum E. Okwudire
  • Patent number: 11881727
    Abstract: A method of establishing a secure wireless communication pairing using a wireless charging for authentication via an out-of-band channel. The method includes a telephone base detecting presence of a wireless handset and initiating a wireless charging process to charge the wireless handset upon detecting the presence of the wireless handset. The method further includes establishing a secure wireless communication pairing by telephone base with the wireless handset, based on information exchanged as part of the wireless charging process.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: January 23, 2024
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Zhaozhuo Li, Jianhua Jiang, Yikai Lin
  • Patent number: 11870281
    Abstract: The invention provides a voltage balancing system for balancing controlling of voltage of battery cells including a first set of battery cells and a second set of battery cells connected in series. The system includes a high-side analog front end (AFE) connected to the first set of battery cells, a low-side analog front end (AFE) connected to the second set of battery cells, a microcontroller communicating with the high-side AFE and the low-side AFE, and a communication isolating module interconnecting between the high-side AFE and the microcontroller. The system further includes a balancing module arranged at a back end of the low-side AFE or the high-side AFE to equalize voltages output by the low-side AFE and the high-side AFE. Compared with the prior arts, the system employs a balancing module to balance the voltages of the two sets of battery cells, which can shorten the voltage difference therebetween.
    Type: Grant
    Filed: December 20, 2020
    Date of Patent: January 9, 2024
    Assignee: Globe (Jiangsu) Co., Ltd
    Inventors: Ming Luo, Chuanjun Liu, Xian Zhuang
  • Patent number: 11865940
    Abstract: An adaptive electric vehicle supply equipment (EVSE) unit provides intelligent control to vary the EVSE load placed upon the local electric connection based upon real time load measurements of both the overall premises load and the specific capacities and requirements of the EVSE. The EVSE unit includes a current power transformer at the main service entry point to capture real time power level at the meter. Additional real time current measurements are available within unit to measure the real time output power on the AC legs going to a vehicle. The unit is configured to a controller module which measure and controls the pilot signal output based on a comparison of the power level at the meter with the power level at the EVSE unit against the desired or required power output to the vehicle.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: January 9, 2024
    Assignee: POWERTREE SERVICES, INC.
    Inventors: Stacey Reineccius, John C. Sellers
  • Patent number: 11865938
    Abstract: A charging system for a battery powered vehicle may include a memory configured to maintain customer accounts, and a processor configured to receive requests from a first customer at a charging station for an increased rate of charge, transmit the request to at least one other customer at the charging station in response to verification of the customer account associated with the first customer; and instruct the charging station to increase the rate of charge for the first customer and decrease the rate of charge for the at least one other customer in response to the at least one other customer accepting the request.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: January 9, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Sujitha Krishna Devaraj, Josh Fodale, Robert Hinh, Adrian Kalinowski, Rafi Odisho
  • Patent number: 11864720
    Abstract: A rechargeable battery for powering a vacuum cleaner includes a casing, a latch for securing the rechargeable battery in the vacuum cleaner, an electrical connection interface, and a battery core disposed within the casing. The casing includes a cover plate, a sidewall extending from the cover plate, and first and second rails that extend longitudinally along the cover plate. Each rail is L-shaped and includes ribs for support. The latch is selectively releasable, and the electrical connection interface is disposed between the first and second rails.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: January 9, 2024
    Assignee: Emerson Electric Co.
    Inventor: Joseph T. Gierer
  • Patent number: 11870290
    Abstract: A vehicle includes: an electrical load; a generator; a battery; and a controller configured to, control the operation of the generator based on the charging rate of the battery, identify a power generation margin representing a ratio of the power that the generator can output to a maximum power based on the duty ratio of the input voltage applied to the generator, and reduce power consumption of the electrical load based on a comparison between the power generation margin and a target margin. The vehicle can prevent or minimize the voltage drop phenomenon of the generator by using the power generation margin of the generator.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: January 9, 2024
    Assignees: Avundai Motor Company, Kia Corporation
    Inventors: Sang Jae Han, Changseob Lim, Shinhae Kim
  • Patent number: 11862998
    Abstract: To improve reliability in balancing while suppressing power consumption during balancing. A battery management device 1 includes cell cons 41 and 42 that perform balancing for adjusting voltages of a plurality of battery cells 2 that are secondary batteries, and a control unit 3 that controls the cell cons 41 and 42. The cell con 41 includes the main timer 412 that measures the elapsed time for stopping the cell con 41, and the stop management unit 413 that stops the cell con 41 when the main timer 412 is abnormal. In the battery management device 1, the battery cell 2 that supplies power to the main timer 412 and the stop management unit 413, and the lead storage battery 7 that supplies power to the control unit 3 are power supplies different from each other.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: January 2, 2024
    Assignee: Hitachi Astemo, Ltd.
    Inventors: Tomonori Kanai, Hikaru Miura, Tomoyuki Arima
  • Patent number: 11845347
    Abstract: Methods and systems for precision charging control of an untethered vehicle include at least a wireless charging antenna carried by a vehicle and in electrical communication with a vehicle propulsion system. A plurality of wireless charging antennae is positioned on or within a roadway and are in communication with at least a roadway control system and a power source. An authentication connection is established between the vehicle wireless charging antenna and the roadway control system. A dynamic seek operation is triggered between the first wireless charging antenna and the one of the plurality of second wireless charging antennae to pair the first wireless charging antenna with the one of the plurality of second wireless charging antennae. A quantity of electrical energy is transferred between the first wireless charging antenna and the one of the plurality of second wireless charging antennae.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: December 19, 2023
    Inventor: David Alan Copeland