Patents Examined by Richard Moerschell
  • Patent number: 10663466
    Abstract: A portable rapid diagnostic test reader system includes a mobile phone having a camera and one or more processors contained within the mobile phone and a modular housing configured to mount to the mobile phone. The modular housing including a receptacle configured to receive a sample tray holding a rapid diagnostic test. At least one illumination source is disposed in the modular housing and located on one side of the rapid diagnostic test. An optical demagnifier is disposed in the modular housing interposed between the rapid diagnostic test and the mobile phone camera.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: May 26, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aydogan Ozcan, Onur Mudanyali, Stoyan Dimitrov, Uzair Sikora, Swati Padmanabhan, Isa Navrus
  • Patent number: 10658072
    Abstract: The present invention relates to a method of evaluation of molecular binding interactions at a sensing surface, and more particularly to a method for evaluation of screening data obtained from an interaction between an analyte in a fluid sample and a ligand immobilized on a sensor surface of a biosensor that is independent of interaction models. Preferably the biosensor is a SPR biosensor. The invention also relates to a biosensor system arranged to perform the method and a computer program arranged to control the operation of the biosensor system.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: May 19, 2020
    Assignee: GE Healthcare Bio-Sciences AB
    Inventor: Robert Karlsson
  • Patent number: 10627400
    Abstract: Successful application of an engineered protein as therapeutics or in other industries would require the protein to have good expression level, good biophysical properties and often desired affinity to its target. The present invention provides s method of screening large numbers of protein candidates (PCs) in all three aspects simultaneously. PCs are fused to a protein anchor, which is captured by the target/antigen. The captured PCs are evaluated for their expression levels, biophysical properties and affinities using conventional methods.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: April 21, 2020
    Assignee: National Research Council of Canada
    Inventors: Jianbing Zhang, Tomoko Hirama
  • Patent number: 10539561
    Abstract: There is disclosed a process and an array for assaying for binding of target molecules to capture molecules on micro array devices, wherein the microarray devices contain electrodes. Specifically, there is disclosed a binding (including nucleotide hybridization) process to detect binding on a microarray wherein the microarray contains electronically addressable electrode devices. There is further disclosed an enzymatically catalyzed oxidation/reduction reaction to take place within a “virtual flask” region of a micro array wherein the reaction is detected by current changes detected on the addressable electrode.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: January 21, 2020
    Assignee: CustomArray, Inc.
    Inventor: Kilian Dill
  • Patent number: 10539580
    Abstract: Compositions and methods for detecting the presence and/or amount of one or more analytes, including analytes such as drugs of abuse, are provided. The compositions include two or more analytes associated with a solid phase, e.g., a particle or a multiwell plate. The compositions and methods also allow the simultaneous, tandem, or serial determination of the presence and/or amount of two or more analytes of interest in a sample.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 21, 2020
    Assignee: Psychemedics Corporation
    Inventors: Virginia Hill, Mohammad Atefi, Michael I. Schaffer
  • Patent number: 10481164
    Abstract: The invention provides a method for controlling contaminants in biopharmaceutical purification processes by using light scattering and UV absorbance to establish a determinant. The invention makes use of multi-angle light scattering (MALS) and UV as a continuous monitoring system to provide information about the elution peak fractions in real-time instead of conventional pooling methods that rely on a predetermined percent UV peak max value to initiate the pooling process; regardless of product quality.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: November 19, 2019
    Assignee: AMGEN INC.
    Inventors: Arthur C. Hewig, III, Duke H. Phan, Yinges Yigzaw, Robert Bailey
  • Patent number: 10378043
    Abstract: Devices and methods are provided for electrically lysing cells and releasing macromolecules from the cells. A microfluidic device is provided that includes a planar channel having a thickness on a submillimeter scale, and including electrodes on its upper and lower inner surfaces. After filling the channel with a liquid, such that the channel contains cells within the liquid, a series of voltage pulses of alternating polarity are applied between the channel electrodes, where the amplitude of the voltage pulses and a pulsewidth of the voltage pulses are effective for causing irreversible electroporation of the cells. The channel is configured to possess thermal properties such that the application of the voltage produces a rapid temperature rise as a result of Joule heating for releasing the macromolecules from the electroplated cells. The channel may also include an internal filter for capturing and concentrating the cells prior to electrical processing.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: August 13, 2019
    Assignee: QVELLA CORPORATION
    Inventors: Samad Talebpour, Aye Aye Khine, Robert Maaskant, Tino Alavie
  • Patent number: 10317403
    Abstract: The present invention provides an immunoassay analyzer capable of discriminating between normal coloring due to a specific immunoreaction and abnormal coloring due to a cause other than the specific immunoreaction in a measurement region of a sample analysis tool. An immunoassay analyzer 1 of the present invention includes an optical detection unit 4 and a determination unit 5. The optical detection unit 4 includes an optical signal measurement unit for measuring an optical signal at each of two or more different wavelengths including a main wavelength for detecting color change due to the specific immunoreaction and a sub-wavelength(s) other than the main wavelength. The determination unit 5 includes a discrimination unit for comparing the respective optical signals at the two or more different wavelengths and discriminating between the color change due to the specific immunoreaction and color change due to a cause other than the specific immunoreaction based on a comparison criterion determined previously.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: June 11, 2019
    Assignee: ARKRAY, Inc.
    Inventor: Kyouichi Ohshiro
  • Patent number: 10317398
    Abstract: A sample assembly includes an outer layer with at least one sample trench. The sample trench includes a first set of antibodies that are bonded on a first surface of a base layer. Target antigens are bonded with the first set of antibodies, and a second set of antibodies are bonded to the target antigens. Further, the sample trench includes nanoparticles that are bonded to the second set of antibodies.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: June 11, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Stephen L. Schwartz, Anna W. Topol, Sandra L. Waters, Daniel J. Winarski
  • Patent number: 10209252
    Abstract: A substrate comprising a microporous microstructure, an interlayer over at least a portion of the microstructure and a functional layer attached to the interlayer, the functional layer having functional sites with a density of at least 50 nanomoles/cm2.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: February 19, 2019
    Assignee: W.L. Gore & Associates, Inc.
    Inventors: Anit Dutta, Heidi Flannery, William P. Mortimer, Jr.
  • Patent number: 10190986
    Abstract: A method for analyzing the results of a ligand-receptor binding assay comprising the steps of: (a) providing the results of a ligand-receptor binding assay; and (b) qualifying the results of a ligand-receptor binding assay. More particularly, the ligand-receptor binding assay involves the steps of combining appropriate reagents in which receptors attached to a solid support, a sample suspected of containing a ligand, and a conjugate comprising a label form a complex in which the label is present at a concentration that is directly proportional to the amount of ligand present in the sample. Alternatively, the ligand-receptor binding assay involves the steps of combining appropriate reagents to perform a ligand-receptor binding assay in which receptors attached to a solid support, a sample suspected of containing a ligand, and a conjugate comprising a label form a complex in which the label is present at a concentration that is inversely proportional to the amount of analyte present in the sample.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: January 29, 2019
    Assignee: Abbott Laboratories
    Inventors: Qiaoqiao Ruan, Sylvia C. Saldana, Joseph P. Skinner, Sergey Y. Tetin
  • Patent number: 10191054
    Abstract: A device for full blood count includes first channel and second channels separated from each other. The device further includes a first inlet configured to provide a whole blood sample to the first and second channels, a second inlet configured to provide a lysis agent for white blood cell count in to the first channel, a third inlet configured to provide a quench solution to the first channel, and a fourth inlet configured to provide a lysis agent for hemoglobin measurement to the second channel.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: January 29, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: David M. Pettigrew, James D. Gwyer
  • Patent number: 10173216
    Abstract: A particle capture system that can be used in the context of a lab-on-a-chip platform for particle- and cell-based assays is described. The system comprises a capture chamber comprising a plurality of capture sites, the capture sites defining a capture area configured to receive individual particles travelling within the capture chamber. By rotating the chamber, the individual particles are biased towards the capture sites where they may be captured.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: January 8, 2019
    Assignee: DUBLIN CITY UNIVERSITY
    Inventors: Jens Ducree, Robert Burger
  • Patent number: 10151750
    Abstract: A detection method (200) detects analytes in a fluid sample. The detection method includes transporting magnetic and/or electric labels (5) after interaction between the sample fluid and a reagent towards a detection receptacle (1). The detection receptacle (1) is initially substantially magnetic and/or electric label (5) free. By transporting the magnetic and/or electric labels (5) after reaction, interference between unreacted reagents and magnetic and/or electric label-assisted detection can be reduced.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: December 11, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Wendy Uyen Dittmer, Menno Willem Jose Prims
  • Patent number: 10145851
    Abstract: Methods are provided for the analysis, including the serial analysis, of very small samples of tissue. The methods utilize a nanofluidic proteomic immunoassay (NIA) to quantify total and low-abundance protein isoforms in a small amount of lysate. NIA detection accurately measure oncoprotein expression and activation in limited clinical specimens, including isoforms that differ in post-translational modifications, such as phosphorylation, and the like. The NIA detection method combines isoelectric protein focusing and antibody detection in a nanofluidic system.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: December 4, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Dean W. Felsher, Alice Fan
  • Patent number: 10126296
    Abstract: The present invention provides apparatus and methods for the rapid determination of analytes in liquid samples by immunoassays incorporating magnetic capture of beads on a sensor capable of being used in the point-of-care diagnostic field.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: November 13, 2018
    Assignee: Abbott Point of Care Inc.
    Inventor: Cary James Miller
  • Patent number: 10107725
    Abstract: A method including: providing a sample with M components to be labeled, where M>2; labeling the components with N stains, where N<M so that at least two components are labeled with a common stain; obtaining a set of spectral images of the sample; classifying different parts of the sample into respective classes that distinguish the commonly stained components based on the set of spectral images; and determining relative amounts of multiple ones of the M components in different regions of the sample. Related apparatus are also disclosed.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: October 23, 2018
    Assignee: Cambridge Research & Instrumentation, Inc.
    Inventor: Clifford C. Hoyt
  • Patent number: 10101299
    Abstract: Methods for quantitatively determining a binding kinetic parameter of a molecular binding interaction are provided. Aspects of embodiments of the methods include: producing a magnetic sensor device including a magnetic sensor in contact with an assay mixture including a magnetically labeled molecule to produce a detectable molecular binding interaction; obtaining a real-time signal from the magnetic sensor; and quantitatively determining a binding kinetics parameter of the molecular binding interaction from the real-time signal. Also provided are systems and kits configured for use in the methods.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: October 16, 2018
    Assignee: The Board of Trustees of the Leland Standford Junior University
    Inventors: Shan X. Wang, Richard S. Gaster, Liang Xu, Shu-Jen Han, Robert Wilson
  • Patent number: 10071373
    Abstract: A lateral-flow assay device includes a substrate having a sample addition zone and a wash addition zone downstream thereof along a fluid flow path through which a sample flows. The fluid flow path is configured to receive a wash fluid in the wash addition zone. A hydrophilic surface is arranged in the wash addition zone. Flow constriction(s) are spaced apart from the fluid flow path and arranged to define, with the hydrophilic surface, a reservoir configured to retain the wash fluid by formation of a meniscus between the hydrophilic surface and the flow constriction(s). The fluid flow path draws the wash fluid from the reservoir by capillary pressure. Apparatus for analyzing a fluidic sample and methods of displacing a fluidic sample in a fluid flow path of an assay device are also described.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: September 11, 2018
    Assignee: ORTHO-CLINICAL DIAGNOSTICS, INC.
    Inventors: Zhong Ding, Edward R. Scalice, Daniel P. Salotto
  • Patent number: 10052630
    Abstract: A microfluidic device comprising one, two or more microchannel structures (101a-h), each of which comprises a reaction microcavity (104a-h) intended for retaining a solid phase material in the form of a wet porous bed. Each of said one, two or more microchannel structures comprises the solid phase material in a dry state together with a bed-preserving agent comprising one or more compounds having bed-preserving activity.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: August 21, 2018
    Assignee: GYROS PATENT AB
    Inventors: Mats Inganas, Susanna Lindman, Helene Derand