Patents Examined by Richard Moerschell
  • Patent number: 9784682
    Abstract: The present invention relates to an optical imaging system communicatively connected to a microwave energy producing source wherein the combination provides for increases in chemical reaction times and the ability to monitor the reactions in real time with sufficient resolution to view the location of intracellular components labeled with luminescent molecules as well as interaction with other biomolecules and responses to localized environmental variables in living cells and tissues during the application of a microwave field.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: October 10, 2017
    Assignee: University of Maryland, Baltimore County
    Inventors: Chris D. Geddes, Michael J. R. Previte
  • Patent number: 9753029
    Abstract: The present invention provides a method and microfluidic immunoassay pScreen™ device for detecting and quantifying the concentration of an analyte in a liquid sample by using antigen-specific antibody-coated magnetic-responsive micro-beads. The methods and devices of the present invention have broad applications for point-of-care diagnostics by allowing quantification of a large variety of analytes, such as proteins, protein fragments, antigens, antibodies, antibody fragments, peptides, RNA, RNA fragments, functionalized magnetic micro-beads specific to CD4+, CD8+ cells, malaria-infected red blood cells, cancer cells, cancer biomarkers such as prostate specific antigen and other cancer biomarkers, viruses, bacteria, and other pathogenic agents, with the sensitivity, specificity and accuracy of bench-top laboratory-based assays.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: September 5, 2017
    Assignee: Carnegie Mellon University
    Inventors: Alberto Gandini, James F. Antaki, Byron Wang Chuan, Joie N. Marhefka
  • Patent number: 9739718
    Abstract: A system for detecting concentration of a target in a solution where sample fluid is passed into a microchannel with wall coated with the receptor that reacts and crosslinks with the target to constrict the channel and slow or stop sample flow through the microchannel. Concentration of the target is determined by measuring length of the sample filled channel.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: August 22, 2017
    Assignee: Brigham Young University
    Inventors: Adam T. Woolley, Debolina Chatterjee, Danielle Scarlet Mansfield
  • Patent number: 9733315
    Abstract: A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: August 15, 2017
    Assignee: UNIVERSITY OF HOUSTON
    Inventors: Dmitri Litvinov, Richard Willson
  • Patent number: 9720003
    Abstract: The present invention relates to a method for measuring Troponin I in a sample comprising the steps of providing a sample, contacting the sample with a monoclonal anti-Troponin I antibody coupled to a magnetic label, contacting the sample with a polyclonal anti-Troponin I antibody coupled to a sensor surface and detecting the magnetic label on the sensor surface. The invention further relates to a device and a cartridge for measuring Troponin I in a sample.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: August 1, 2017
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Wendy Uyen Dittmer, Toon Hendrik Evers, Peggy De Kievit, Ricky Kamps, Joost Lambert Max Vissers, Michael Franciscus Wilhelmus Cornelis Martens, David Walterus Cornelis Dekkers
  • Patent number: 9709560
    Abstract: Devices capable applying microwave and RF electromagnetic radiation to specific molecular interactions between a capture molecule and a target analyte and capable of sensing the specific molecular interaction are provided. Specific molecular interactions include, for example, specific recognition events such as, receptor-ligand, antigen-antibody, DNA-protein, sugar-lectin, RNA-ribosome, and enzyme substrate interactions and nucleic acid-nucleic acid hybridizations. Additionally, methods are provided for detecting the presence or absence of a target analyte in a sample. The presence or absence of the target analyte is detected, in part, through the detection of a binding complex between the target analyte and a capture molecule in the presence of microwave and or RF electromagnetic radiation.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: July 18, 2017
    Assignee: Intel Corporation
    Inventor: Moran Horesh
  • Patent number: 9678005
    Abstract: The present invention features methods and devices for microorganisms through detecting Mie light scattering from immunoagglutinated beads. The methods feature providing a first bead suspension with antibody specific for the microorganism conjugated to beads; mixing the first bead suspension with a sample to form a first mixture; irradiating the first mixture with first incident light; detecting forward light scattering at a first angle with respect to the first incident light, where the first angle being between about 30 to 60 degrees; determining I from the light scattering; providing a second bead suspension with no antibody and simultaneously measuring I0 in a similar manner; comparing I with I0. All light scattering measurements may be made in a two-well slide or a Y-channel microfluidic device.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: June 13, 2017
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventor: Jeong-Yeol Yoon
  • Patent number: 9664677
    Abstract: A composition can include a complex, where the complex includes a photoluminescent nanostructure and a polymer free from selective binding to an analyte, the polymer adsorbed on the photoluminescent nanostructure, and a selective binding site associated with the complex.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 30, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Michael S. Strano, Jingqing Zhang, Paul Walter Barone, Daniel A. Heller, Jong-Ho Kim
  • Patent number: 9643178
    Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyzes. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyzes requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyzes.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: May 9, 2017
    Assignee: Fluidigm Corporation
    Inventors: Marc Unger, Ian D. Manger, Michael Lucero, Yong Yi, Emily Miyashita-Lin, Anja Wienecke, Geoffrey Facer
  • Patent number: 9615773
    Abstract: The present invention is related to a device and method for improvement of sleep testing and sleep therapy using acoustic data to examine various aspects of a subject's sleep quality. More particularly, the method and device of the present invention includes the use of an acoustic actuator and an acoustic sensor to acoustically monitor the state of a subject's airway during sleep in order to determine airway obstructions and their locations as they relate to, among other variables, a subject's sleep stage, body position and sleep quality.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: April 11, 2017
    Assignee: Cleveland Medical Devices Inc.
    Inventors: Hani Kayyali, Brian M. Kolkowski
  • Patent number: 9574245
    Abstract: Devices and methods are provided for electrically lysing cells and releasing macromolecules from the cells. A microfluidic device is provided that includes a planar channel having a thickness on a submillimeter scale, and including electrodes on its upper and lower inner surfaces. After filling the channel with a liquid, such that the channel contains cells within the liquid, a series of voltage pulses of alternating polarity are applied between the channel electrodes, where the amplitude of the voltage pulses and a pulsewidth of the voltage pulses are effective for causing irreversible electroporation of the cells. The channel is configured to possess thermal properties such that the application of the voltage produces a rapid temperature rise as a result of Joule heating for releasing the macromolecules from the electroplated cells. The channel may also include an internal filter for capturing and concentrating the cells prior to electrical processing.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: February 21, 2017
    Assignee: QVELLA CORPORATION
    Inventors: Samad Talebpour, Aye Aye Khine, Robert Maaskant, Tino Alavie
  • Patent number: 9487592
    Abstract: An antibody-fragment-immobilizing substrate includes a substrate and at least one set of antibody fragments, wherein the antibody fragments of each set includes at least two types of separate antibody fragments that are capable of recognizing one type of antigen and that are independently immobilized on the substrate in a positional relationship that allows each of the antibody fragments in one set to bind to the same antigen.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: November 8, 2016
    Assignees: FUJIFILM Corporation, THE UNIVERSITY OF TOKYO
    Inventors: Koichi Minami, Hirohiko Tsuzuki, Hiroshi Ueda, Masaki Ihara
  • Patent number: 9476887
    Abstract: Successful application of an engineered protein as therapeutics or in other industries would require the protein to have good expression level, good biophysical properties and often desired affinity to its target. The present invention provides a method of screening large numbers of protein candidates (PCs) in all three aspects simultaneously. PCs are fused to a protein anchor, which is captured by the target/antigen. The captured PCs are evaluated for their expression levels, biophysical properties and affinities using conventional methods.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: October 25, 2016
    Assignee: National Research Council of Canada
    Inventors: Jianbing Zhang, Tomoko Hirama
  • Patent number: 9470683
    Abstract: A method of determining aggregates of a macromolecule monomer in a fluid containing the macromolecule, comprises the steps of: contacting a sample of the fluid with a sensing surface of an interaction analysis sensor, wherein the sensing surface is capable of specific binding interaction with the macromolecule, determining at least one kinetic parameter for the interaction of the fluid sample with the sensing surface, comparing the determined kinetic parameter or parameters with that or those determined for at least one fluid sample having a known fraction or fractions of aggregates of the macromolecule, and determining therefrom the fraction of macromolecule in the sample that is in the form of aggregate or aggregates.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 18, 2016
    Assignee: GE HEALTHCARE BIO-SCIENCES AB
    Inventors: Stefan Lofas, Bjorn Persson
  • Patent number: 9465036
    Abstract: The invention relates to a new type of element encoded particles suitable for the attachment of bio molecules to enable massively multiplex bio-analytical methods, and to calibrate and tune the elemental flow cytometer mass spectrometer (FC-MS).
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: October 11, 2016
    Assignee: Fluidigm Canada Inc.
    Inventors: Mitchell A. Winnik, Cedric Vancaeyzeele, Vladimir I. Baranov
  • Patent number: 9453831
    Abstract: A nanopore capture system may include a material configured to pass through a nanopore device in a controlled manner based upon its interaction with the nanopore device. The system may also include a capture mechanism connected to one end of the material. The capture mechanism may be configured to catch a particular type of molecule while ignoring other types of molecules. The system may also include a controller to manipulate and/or detect the particular type of molecule.
    Type: Grant
    Filed: April 21, 2012
    Date of Patent: September 27, 2016
    Assignee: GlobalFoundries Inc.
    Inventors: Stanislav Polonsky, Ali Afzali-Ardakani, Hongbo Peng, Gustavo A. Stolovitzky, Ajay A. Royyuru, Mark N. Wegman
  • Patent number: 9400277
    Abstract: Methods for detecting one or more analytes, such as a protein, in a fluid path are provided. The methods include resolving, immobilizing and detecting one or more analytes in a fluid path, such as a capillary. Also included are devices and kits for performing such assays.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 26, 2016
    Assignee: ProteinSimple
    Inventors: Tom Weisan Yang, Arunashree Bhamidipati, Andrei V. Bordunov, James Eugene Knittle, Roger A. O'Neill, Karl O. Voss
  • Patent number: 9304133
    Abstract: Methods and apparatus are provided to resolve analytes within a fluid path using isoelectric focusing, gel electrophoresis, or other separation means. Materials within the fluid path that are compatible with these separation means are used to attach resolved analytes to the wall of the fluid path. Attachment results from a triggerable event such as photoactivation, thermal activation, or chemical activation. In accordance with a further aspect of the present invention, the material in the capillary may also be disrupted, by either the triggerable event or a subsequent event such as melting or photocleavage. Thus, an open lumen or porous structure may be created within the fluid path, allowing unbound analyte materials to be washed from the fluid path, and detection agents to be washed into the fluid path. The separation-compatible materials may be polymerizable monomers, gels, entangled polymers or other materials.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: April 5, 2016
    Assignee: ProteinSimple
    Inventors: Roger A. O'Neill, Marc Glazer, Tom W. Yang, Daniel J. Suich, Karl O. Voss
  • Patent number: 9304130
    Abstract: Described are embodiments of an invention for a sample assembly with trenches for detection of analytes with electromagnetic read heads. The sample assembly includes an outer layer with at least one sample trench. The sample trench includes a first set of antibodies that are bonded on a first surface of a base layer. Target antigens are bonded with the first set of antibodies, and a second set of antibodies are bonded to the target antigens. Further, the sample trench includes nanoparticles that are bonded to the second set of antibodies. A head module includes a write head for magnetizing nanoparticles and a read sensor for detecting the magnetized nanoparticles, and thus, the target antigens. The sample trench constrains the biological sample, and thus the target antigen, during the preparation and subsequent analysis of the biological sample. Accordingly, the target antigen is aligned with read elements of a head module such that the target antigen is reliably and accurately detected.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 5, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Stephen L. Schwartz, Anna Wanda Topol, Sandra L. Waters, Daniel J. Winarski
  • Patent number: 9155524
    Abstract: A physiologically active substance collecting device, includes: a collecting section brought into contact with a body surface of a living organism to acquire a physiologically active substance from the body surface; and a liquid sending means for sending a solvent to the collecting section, the collecting section having an aperture at which the solvent flown by being sent from the liquid sending means contacts the body surface.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: October 13, 2015
    Assignee: Sony Corporation
    Inventors: Tomoko Katsuhara, Yuuki Watanabe, Masahiro Matsumoto