Patents Examined by Richard O. Dean
  • Patent number: 5360591
    Abstract: Reduced lead bismuth yellow brasses are disclosed that are primarily useful for plumbing applications. Very low levels of grain refiners are used to increase dezincification resistance, to improve polishability, and for other desired characteristics. Silver and boron are preferred grain refiners.
    Type: Grant
    Filed: May 17, 1993
    Date of Patent: November 1, 1994
    Assignee: Kohler Co.
    Inventors: Roland L. Ruetz, Jan V. Vojta, Donna L. Day
  • Patent number: 5360486
    Abstract: This invention relates to a blast cleaning apparatus and method which includes a laterally moving conveyor with openings therethrough, and particularly a laterally moving wire mesh conveyor. The conveying surface is moved laterally such that there is lateral movement of the conveyor surface in the blast cleaning chamber. The lateral movement is relative to the workpiece and is substantially horizontal and substantially transverse to the direction of advancement of the conveyor. The conveying surface is moved relative to the workpiece so as to expose to upwardly directed cleaning material areas of the workpiece that would otherwise be protected from the cleaning material by material separating the openings in the conveying surface.
    Type: Grant
    Filed: September 2, 1993
    Date of Patent: November 1, 1994
    Assignee: Blast Cleaning Products Ltd.
    Inventor: Charles P. Elliott
  • Patent number: 5360675
    Abstract: An alloy of 3 to 9 weight percent boron with the balance molybdenum for use as a thermal spray coating for articles intended to be exposed to molten zinc.
    Type: Grant
    Filed: May 11, 1993
    Date of Patent: November 1, 1994
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: John C. Wood, Shoichi Katoh, Hideo Nitta
  • Patent number: 5358577
    Abstract: A high strength, high toughness stainless steel consisting, by weight, of C more than 0.16% but less than 0.25%, Si not more than 2.0%, Mn not more than 1.0%, Ni not more than 2.0%, Cr from 11 to 15%, Mo not less than 0.5% but less than 3.0%, Co from 12 to 21%, at least one kind selected from the group consisting of V from 0.1 to 0.5% and Nb less than 0.1% which at least one kind is added as occasion demands, and the balance Fe and incidental impurities. This steel is produced by a method comprising the steps of: preparing a stainless steel having the composition of any one of the claims 1 to 4; subjecting the stainless steel to a solution heat treatment at a temperature of 950 to 1150.degree. C.; quenching the steel; subjecting the steel to a sub zero treatment at a temperature of -50.degree. to -100.degree. C.; and subjecting the steel to a tempering at a temperature of 120.degree. to 450.degree. C.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: October 25, 1994
    Assignees: Hitachi Metals, Ltd., The Society of Japanese Aerospace Companies, Inc., Sumitomo Precision Products Co., Ltd.
    Inventors: Toshihiro Uehara, Rikizo Watanabe, Nobuhito Nakama
  • Patent number: 5358573
    Abstract: A pipe pig is reciprocated through a section of a pipe having deposits of scale. In the case of very hard deposits, each pass through the contaminated sections removes a thin layer each time. The location of the coated section can be located by first running the pig through the pipe. The hydraulic pressure is monitored using pen recorders. At each bend in the pipe, a sharp pressure increase will be recorded. The location of the bends can be determined from a drawing of the pipe installation. When the pig encounters scale, there will be a pressure increase that corresponds to the degree of resistance met by the pig resulting from the scale. Greater pressure means greater scale build up. By running the pig through the pipe, a profile of the scale may be created. The location of the scale can be correlated to the known location of the bends. The scale itself can be flushed out with the hydraulic propellant and analyzed. The pin height and hardness can then be selected for the particular scale encountered.
    Type: Grant
    Filed: May 12, 1993
    Date of Patent: October 25, 1994
    Inventor: Orlande Sivacoe
  • Patent number: 5358572
    Abstract: The process of the present invention teaches a novel method of cleansing a silane coated substrate of excess vinyl benzaldehyde. The basic process comprises the step of rinsing the silane coated substrate in acid, prior to exposing the silane coated film to the beverage. Alternatively, the silane coated substrate may be washed with water after the silane coated substrate is rinsed in the acid. Another alternate method teaches repeating the acid wash and water rinse steps either with the same or a different acid.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: October 25, 1994
    Assignee: Dow Corning Corporation
    Inventor: Ming-Hsiung Yeh
  • Patent number: 5356495
    Abstract: A method for manufacturing aluminum alloy can body stock including two sequences of continuous, in-line operations. The first sequence includes the continuous, in-line steps of hot rolling, coiling, coil self-annealing and the second sequence includes the continuous, in-line steps of uncoiling, quenching without intermediate cooling, cold rolling, and coiling.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: October 18, 1994
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Gavin F. Wyatt-Mair, Donald G. Harrington
  • Patent number: 5356480
    Abstract: A method of washing hose using high water pressure, fire hose washing apparatus generally having a back plate, cleaning heads with spray nozzles mounted to the back plate, and optionally, guide rollers rotatably mounted to the back plate. Optionally, the apparatus may have rollers oriented to direct hose in a generally serpentine pattern. The washing apparatus may also comprise means for taking up washed hose, means for shutting off the hose washer including, for example, a hood switch or an electromechanical plate for sensing the hose coupling, means for washing the edge of the treated hose and means for loading hose into the hose washing apparatus. Also disclosed is a method of using the high water pressure hose washing apparatus and a high water pressure cleaning system.
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: October 18, 1994
    Inventor: Edward L. Melgeorge
  • Patent number: 5356482
    Abstract: An improved process for the decontamination of process equipment and vessels is described wherein an extractant material for the contaminant and a surfactant are vaporized, heated with steam, to condense on the internal surfaces of the vessel to trap contaminants, such as benzene, for removal from the vessel to allow safe entry for humans for inspection and maintenance.
    Type: Grant
    Filed: December 30, 1992
    Date of Patent: October 18, 1994
    Assignee: SERV-Tech, Inc.
    Inventors: Nishaneth K. Mehta, Richard W. Krajicek
  • Patent number: 5356478
    Abstract: A plasma cleaning method for removing residues previously formed in a plasma treatment chamber by dry etching layers such as photoresist, barriers, etc., on a wafer. The method includes introducing a cleaning gas mixture of an oxidizing gas and a chlorine containing gas into the chamber followed by performing a plasma cleaning step. The plasma cleaning step is performed by activating the cleaning gas mixture and forming a plasma cleaning gas, contacting interior surfaces of the chamber with the plasma cleaning gas and removing residues on the interior surfaces. The cleaning gas mixture can also include a fluorine-based gas. For instance, the cleaning gas can include Cl.sub.2 and O.sub.2 and optionally CF.sub.4. An advantage of the cleaning method is that it is not necessary to open the plasma treatment chamber. Also, it is possible to completely remove all residues and prevent by-products formed during the cleaning step from remaining after the cleaning step.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: October 18, 1994
    Assignee: LAM Research Corporation
    Inventors: Ching-Hwa Chen, David Arnett, David Liu
  • Patent number: 5356483
    Abstract: A method for washing institutional crockery in a dishwashing machine having at least three washing zones with at least three wash tanks in which the crockery is contacted with wash liquor having an increased concentration of surfactant by introducing make-up surfactant into the penultimate wash tank and bypassing a portion of the fresh water feed from the last wash tank around the penultimate wash tank.
    Type: Grant
    Filed: July 23, 1992
    Date of Patent: October 18, 1994
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Guenther Saalmann, Josef Selbertinger, Thomas Schuster, Udo Schaab, Friedel Rings
  • Patent number: 5356490
    Abstract: Heating an aqueous mixture of a fluoroacid such as H.sub.2 TiF.sub.6 and an oxide, hydroxide, and/or carbonate such as silica produces a clear mixture with long term stability against settling of any solid phase, even when the oxide, hydroxide, or carbonate phase before heating was a dispersed solid with sufficiently large particles to scatter light and make the mixture before heating cloudy. The clear mixture produced by heating can either be mixed with water soluble and/or water dispersible polymers, for example with dispersed polymers of the diglycidyl ether of bisphenol-A or an acrylic acid polymer, or with soluble hexavalent and/or trivalent chromium, to produce a composition that improves the corrosion resistance of metals treated with the composition, especially after subsequent painting.
    Type: Grant
    Filed: October 5, 1993
    Date of Patent: October 18, 1994
    Assignee: Henkel Corporation
    Inventors: Shawn E. Dolan, Gary A. Reghi
  • Patent number: 5354384
    Abstract: An improved apparatus and method for removing trace contaminants from the surface of a chosen substrate, such as delicate surfaces or precision parts, wherein the improvement consists of heating a portion of a chosen substrate surface immediately before, during and/or after application of a stream of cleaning snow to the same portion of the substrate surface.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: October 11, 1994
    Assignee: Hughes Aircraft Company
    Inventors: John D. Sneed, Wilfried Krone-Schmidt, Michael J. Slattery, Howard S. Bowen
  • Patent number: 5354388
    Abstract: A process for producing the beryllium-copper alloy comprises the steps of casing a beryllium-copper alloy composed essentially of 1.00 to 2.00% by weight of Be, 0.18 to 0.35% by weight of Co, and the balance being Cu, rolling the cast beryllium-copper alloy, annealing the alloy at 500.degree. to 800.degree. C. for 2 to 10 hours, then cold rolling the annealed alloy at a reduction rate of not less than 40%, annealing the cold rolled alloy again at 500.degree. to 800.degree. C. for 2 to 10 hours, thereafter cold rolling the alloy to a desired thickness, and subjecting the annealed alloy to a final solid solution treatment. The beryllium-copper alloy obtained by this producing process is also disclosed, in which an average grain size is not more than 20 .mu.m, and a natural logarithm of a coefficient of variation of the grain size is not more than 0.25.
    Type: Grant
    Filed: June 11, 1993
    Date of Patent: October 11, 1994
    Assignee: NGK Insulators, Ltd.
    Inventors: Keigo Nojiri, Takaharu Iwadachi
  • Patent number: 5350468
    Abstract: A process for producing amorphous alloy materials having high toughness and high strength from various alloy powders, thin ribbons or bulk materials consisting of an amorphous phase by heating them to a temperature at which intermetallic compounds or other compounds are not produced. During this heating, fine crystal grains consisting of a supersaturated solid solution made of a main alloying element and additive elements and having a mean grain diameter of 5 nm to 500 nm are precipitated and uniformly dispersed in a volume percentage of 5 to 50% throughout an amorphous matrix. In the process, when deformation, pressing or other working is simultaneously conducted with the heating, consolidation or combining of the resultant alloy materials can also be effected in the same production procedure. The amorphous alloy used in the production process preferably comprises Al, Mg or Ti as a main element and, as additive elements, rare earth elements and/or other elements.
    Type: Grant
    Filed: September 2, 1992
    Date of Patent: September 27, 1994
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue
  • Patent number: 5350458
    Abstract: The invention provides a cleaning solution and a method of using the cleaning solution for cleaning diagnostic analyzers. The solution contains a rapidly wetting surfactant and an inorganic or organic acid. The invention provides rapid and effective cleaning of proteins from all types of materials used for components of automatic analyzers.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: September 27, 1994
    Assignee: Boehringer Mannheim GmbH
    Inventors: Judith Pinsl-Ober, Roland Schenk
  • Patent number: 5350457
    Abstract: A detergent composition which can effectively cleanse electronic and precision parts and produces waste effluent water which is very easily treated is disclosed. The detergent composition comprises one or more nonionic surface active agents and, when diluted with water to a concentration of 5%, the aqueous solution has a cloud point of 5.degree.-100.degree. C. Disclosed is also a process for cleansing electronic and precision parts comprising the steps 1) to 3): 1) cleaning the electronic and precision parts with a detergent composition comprising one or more nonionic surface active agents and wherein a 5% by weight of aqueous solution of said detergent composition has a cloud point of 5.degree.-100.degree. C., or with an aqueous solution of this detergent composition, at a temperature below said cloud point, 2) rinsing the electronic and precision parts with a rinse water resulted in step 1) at a temperature of 5.degree.-100.degree. C.
    Type: Grant
    Filed: August 27, 1993
    Date of Patent: September 27, 1994
    Assignee: Kao Corporation
    Inventors: Kozo Kitazawa, Eiji Kashihara
  • Patent number: 5350064
    Abstract: A novel disposable container and method is used for cleaning and lubricating a standard dental handpiece. The disposable container completely encloses a head of the dental handpiece. When the handpiece is cleaned or lubricated with cleaning or lubricating agents, the container collects cleaning or lubricating agents and any other materials that are expelled therewith from the handpiece to prevent these materials from entering the atmosphere.
    Type: Grant
    Filed: April 16, 1993
    Date of Patent: September 27, 1994
    Assignee: Gendex Corporation
    Inventor: Gary G. Schneck
  • Patent number: 5348595
    Abstract: A Ti-Al intermetallic compound is prepared from a mixture of about 40 to 52 atomic % Ti, about 48 to 60 atomic % Al, and 10 to 3000 atomic ppm of at least one of P, As, Se, or Te. The mixture is melted and then solidified. The solidified product is annealed to form a uniform microstructure.
    Type: Grant
    Filed: April 22, 1993
    Date of Patent: September 20, 1994
    Assignee: Nippon Steel Corporation
    Inventors: Toshihiro Hanamura, Ryuji Uemori, Mitsuru Tanino, Jin-ichi Takamura
  • Patent number: 5346563
    Abstract: Superalloy articles are made more oxidation resistant by a process which includes heat treating the article in the presence of foreign chemical species, at a temperature at which the foreign chemical species reacts with and modifies any oxide film present on the article surface. The heat treatment is best carried out at a temperature above the gamma prime solvus temperature of the article and below the incipient melting temperature of the article. Alternatively, the heat treatment may be carried out within the range defined by the incipient melting temperature of the article and about 150.degree. C. below the incipient melting temperature of the article. At such temperatures the foreign chemical species reacts with and modifies the oxide film on the article surface. Sulfur is then able to diffuse through such modified film, and a more oxidation resistant component is produced.
    Type: Grant
    Filed: April 14, 1993
    Date of Patent: September 13, 1994
    Assignee: United Technologies Corporation
    Inventors: William P. Allen, Norman S. Bornstein, Stephen Chin, Michael DeCrescente, David N. Duhl, Donald R. Parille, Roscoe A. Pike, John G. Smeggil