Abstract: This invention relates to a blast cleaning apparatus and method which includes a laterally moving conveyor with openings therethrough, and particularly a laterally moving wire mesh conveyor. The conveying surface is moved laterally such that there is lateral movement of the conveyor surface in the blast cleaning chamber. The lateral movement is relative to the workpiece and is substantially horizontal and substantially transverse to the direction of advancement of the conveyor. The conveying surface is moved relative to the workpiece so as to expose to upwardly directed cleaning material areas of the workpiece that would otherwise be protected from the cleaning material by material separating the openings in the conveying surface.
Abstract: Reduced lead bismuth yellow brasses are disclosed that are primarily useful for plumbing applications. Very low levels of grain refiners are used to increase dezincification resistance, to improve polishability, and for other desired characteristics. Silver and boron are preferred grain refiners.
Type:
Grant
Filed:
May 17, 1993
Date of Patent:
November 1, 1994
Assignee:
Kohler Co.
Inventors:
Roland L. Ruetz, Jan V. Vojta, Donna L. Day
Abstract: A pressure pad comprises a plenum chamber, adapted to be conneceted to a pressurized-fluid supply means, having a pair of parallel slit nozzles formed in a top wall, and the chamber is arranged underneath a path of a strip. The plenum chamber is provided with holes in the top wall and at least two obstructions on the top wall. The holes are arranged on imaginary lines that extend between the nozzles on both sides of the top wall and central portions thereof point to adjacent edges of the path. Each of the obstructions comprises at least one obstructing wall arranged on either side of one of the imaginary lines. The lines may have V-, Arch- or Bracket-shaped configurations.
Abstract: The process of the present invention teaches a novel method of cleansing a silane coated substrate of excess vinyl benzaldehyde. The basic process comprises the step of rinsing the silane coated substrate in acid, prior to exposing the silane coated film to the beverage. Alternatively, the silane coated substrate may be washed with water after the silane coated substrate is rinsed in the acid. Another alternate method teaches repeating the acid wash and water rinse steps either with the same or a different acid.
Abstract: A high strength, high toughness stainless steel consisting, by weight, of C more than 0.16% but less than 0.25%, Si not more than 2.0%, Mn not more than 1.0%, Ni not more than 2.0%, Cr from 11 to 15%, Mo not less than 0.5% but less than 3.0%, Co from 12 to 21%, at least one kind selected from the group consisting of V from 0.1 to 0.5% and Nb less than 0.1% which at least one kind is added as occasion demands, and the balance Fe and incidental impurities. This steel is produced by a method comprising the steps of: preparing a stainless steel having the composition of any one of the claims 1 to 4; subjecting the stainless steel to a solution heat treatment at a temperature of 950 to 1150.degree. C.; quenching the steel; subjecting the steel to a sub zero treatment at a temperature of -50.degree. to -100.degree. C.; and subjecting the steel to a tempering at a temperature of 120.degree. to 450.degree. C.
Type:
Grant
Filed:
July 20, 1993
Date of Patent:
October 25, 1994
Assignees:
Hitachi Metals, Ltd., The Society of Japanese Aerospace Companies, Inc., Sumitomo Precision Products Co., Ltd.
Abstract: A pipe pig is reciprocated through a section of a pipe having deposits of scale. In the case of very hard deposits, each pass through the contaminated sections removes a thin layer each time. The location of the coated section can be located by first running the pig through the pipe. The hydraulic pressure is monitored using pen recorders. At each bend in the pipe, a sharp pressure increase will be recorded. The location of the bends can be determined from a drawing of the pipe installation. When the pig encounters scale, there will be a pressure increase that corresponds to the degree of resistance met by the pig resulting from the scale. Greater pressure means greater scale build up. By running the pig through the pipe, a profile of the scale may be created. The location of the scale can be correlated to the known location of the bends. The scale itself can be flushed out with the hydraulic propellant and analyzed. The pin height and hardness can then be selected for the particular scale encountered.
Abstract: An improved process for the decontamination of process equipment and vessels is described wherein an extractant material for the contaminant and a surfactant are vaporized, heated with steam, to condense on the internal surfaces of the vessel to trap contaminants, such as benzene, for removal from the vessel to allow safe entry for humans for inspection and maintenance.
Type:
Grant
Filed:
December 30, 1992
Date of Patent:
October 18, 1994
Assignee:
SERV-Tech, Inc.
Inventors:
Nishaneth K. Mehta, Richard W. Krajicek
Abstract: A plasma cleaning method for removing residues previously formed in a plasma treatment chamber by dry etching layers such as photoresist, barriers, etc., on a wafer. The method includes introducing a cleaning gas mixture of an oxidizing gas and a chlorine containing gas into the chamber followed by performing a plasma cleaning step. The plasma cleaning step is performed by activating the cleaning gas mixture and forming a plasma cleaning gas, contacting interior surfaces of the chamber with the plasma cleaning gas and removing residues on the interior surfaces. The cleaning gas mixture can also include a fluorine-based gas. For instance, the cleaning gas can include Cl.sub.2 and O.sub.2 and optionally CF.sub.4. An advantage of the cleaning method is that it is not necessary to open the plasma treatment chamber. Also, it is possible to completely remove all residues and prevent by-products formed during the cleaning step from remaining after the cleaning step.
Type:
Grant
Filed:
January 3, 1994
Date of Patent:
October 18, 1994
Assignee:
LAM Research Corporation
Inventors:
Ching-Hwa Chen, David Arnett, David Liu
Abstract: A method for washing institutional crockery in a dishwashing machine having at least three washing zones with at least three wash tanks in which the crockery is contacted with wash liquor having an increased concentration of surfactant by introducing make-up surfactant into the penultimate wash tank and bypassing a portion of the fresh water feed from the last wash tank around the penultimate wash tank.
Type:
Grant
Filed:
July 23, 1992
Date of Patent:
October 18, 1994
Assignee:
Henkel Kommanditgesellschaft auf Aktien
Inventors:
Guenther Saalmann, Josef Selbertinger, Thomas Schuster, Udo Schaab, Friedel Rings
Abstract: Heating an aqueous mixture of a fluoroacid such as H.sub.2 TiF.sub.6 and an oxide, hydroxide, and/or carbonate such as silica produces a clear mixture with long term stability against settling of any solid phase, even when the oxide, hydroxide, or carbonate phase before heating was a dispersed solid with sufficiently large particles to scatter light and make the mixture before heating cloudy. The clear mixture produced by heating can either be mixed with water soluble and/or water dispersible polymers, for example with dispersed polymers of the diglycidyl ether of bisphenol-A or an acrylic acid polymer, or with soluble hexavalent and/or trivalent chromium, to produce a composition that improves the corrosion resistance of metals treated with the composition, especially after subsequent painting.
Abstract: A method for manufacturing aluminum alloy can body stock including two sequences of continuous, in-line operations. The first sequence includes the continuous, in-line steps of hot rolling, coiling, coil self-annealing and the second sequence includes the continuous, in-line steps of uncoiling, quenching without intermediate cooling, cold rolling, and coiling.
Type:
Grant
Filed:
December 28, 1992
Date of Patent:
October 18, 1994
Assignee:
Kaiser Aluminum & Chemical Corporation
Inventors:
Gavin F. Wyatt-Mair, Donald G. Harrington
Abstract: A method of washing hose using high water pressure, fire hose washing apparatus generally having a back plate, cleaning heads with spray nozzles mounted to the back plate, and optionally, guide rollers rotatably mounted to the back plate. Optionally, the apparatus may have rollers oriented to direct hose in a generally serpentine pattern. The washing apparatus may also comprise means for taking up washed hose, means for shutting off the hose washer including, for example, a hood switch or an electromechanical plate for sensing the hose coupling, means for washing the edge of the treated hose and means for loading hose into the hose washing apparatus. Also disclosed is a method of using the high water pressure hose washing apparatus and a high water pressure cleaning system.
Abstract: An improved apparatus and method for removing trace contaminants from the surface of a chosen substrate, such as delicate surfaces or precision parts, wherein the improvement consists of heating a portion of a chosen substrate surface immediately before, during and/or after application of a stream of cleaning snow to the same portion of the substrate surface.
Type:
Grant
Filed:
April 30, 1993
Date of Patent:
October 11, 1994
Assignee:
Hughes Aircraft Company
Inventors:
John D. Sneed, Wilfried Krone-Schmidt, Michael J. Slattery, Howard S. Bowen
Abstract: A process for producing the beryllium-copper alloy comprises the steps of casing a beryllium-copper alloy composed essentially of 1.00 to 2.00% by weight of Be, 0.18 to 0.35% by weight of Co, and the balance being Cu, rolling the cast beryllium-copper alloy, annealing the alloy at 500.degree. to 800.degree. C. for 2 to 10 hours, then cold rolling the annealed alloy at a reduction rate of not less than 40%, annealing the cold rolled alloy again at 500.degree. to 800.degree. C. for 2 to 10 hours, thereafter cold rolling the alloy to a desired thickness, and subjecting the annealed alloy to a final solid solution treatment. The beryllium-copper alloy obtained by this producing process is also disclosed, in which an average grain size is not more than 20 .mu.m, and a natural logarithm of a coefficient of variation of the grain size is not more than 0.25.
Abstract: A novel disposable container and method is used for cleaning and lubricating a standard dental handpiece. The disposable container completely encloses a head of the dental handpiece. When the handpiece is cleaned or lubricated with cleaning or lubricating agents, the container collects cleaning or lubricating agents and any other materials that are expelled therewith from the handpiece to prevent these materials from entering the atmosphere.
Abstract: A process for producing amorphous alloy materials having high toughness and high strength from various alloy powders, thin ribbons or bulk materials consisting of an amorphous phase by heating them to a temperature at which intermetallic compounds or other compounds are not produced. During this heating, fine crystal grains consisting of a supersaturated solid solution made of a main alloying element and additive elements and having a mean grain diameter of 5 nm to 500 nm are precipitated and uniformly dispersed in a volume percentage of 5 to 50% throughout an amorphous matrix. In the process, when deformation, pressing or other working is simultaneously conducted with the heating, consolidation or combining of the resultant alloy materials can also be effected in the same production procedure. The amorphous alloy used in the production process preferably comprises Al, Mg or Ti as a main element and, as additive elements, rare earth elements and/or other elements.
Type:
Grant
Filed:
September 2, 1992
Date of Patent:
September 27, 1994
Assignees:
Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
Abstract: A detergent composition which can effectively cleanse electronic and precision parts and produces waste effluent water which is very easily treated is disclosed. The detergent composition comprises one or more nonionic surface active agents and, when diluted with water to a concentration of 5%, the aqueous solution has a cloud point of 5.degree.-100.degree. C. Disclosed is also a process for cleansing electronic and precision parts comprising the steps 1) to 3): 1) cleaning the electronic and precision parts with a detergent composition comprising one or more nonionic surface active agents and wherein a 5% by weight of aqueous solution of said detergent composition has a cloud point of 5.degree.-100.degree. C., or with an aqueous solution of this detergent composition, at a temperature below said cloud point, 2) rinsing the electronic and precision parts with a rinse water resulted in step 1) at a temperature of 5.degree.-100.degree. C.
Abstract: The invention provides a cleaning solution and a method of using the cleaning solution for cleaning diagnostic analyzers. The solution contains a rapidly wetting surfactant and an inorganic or organic acid. The invention provides rapid and effective cleaning of proteins from all types of materials used for components of automatic analyzers.
Abstract: A Ti-Al intermetallic compound is prepared from a mixture of about 40 to 52 atomic % Ti, about 48 to 60 atomic % Al, and 10 to 3000 atomic ppm of at least one of P, As, Se, or Te. The mixture is melted and then solidified. The solidified product is annealed to form a uniform microstructure.
Abstract: The method makes possible the production of iron aluminide raw materials which consist of a Fe.sub.3 Al-base alloy containing 18-35% Al, 3-15% Cr, 0.2-0.5% B and/or C, and altogether 0-8% of the following alloying additives: Mo, Nb, Zr, Y and/or V, as well as iron as dominant remainder. In accordance with the invention additives are added to the melt of a known alloy, from which dispersed crystallites, dispersoids, are formed which thanks to good wettability become upon solidification, embedded in the monocrystalline phase. From the solid alloy, through hot rolling at a temperature between 650.degree. and 1000.degree. C., a fine grain structure may be generated.