Patents Examined by Robert Kunemund
-
Patent number: 7473316Abstract: What is described here is a process for the initial growth of nitrogenous semiconductor crystal materials in the form AXBYCZNVMW wherein A, B, C is an element of group II or III, N is nitrogen, M represents an element of group V or VI, and X, Y, Z, W denote the molar fraction of each element of this compound, using a, which are deposited on sapphire, SiC or Si, using various ramp functions permitting a continuous variation of the growth parameters during the initial growth.Type: GrantFiled: July 24, 2000Date of Patent: January 6, 2009Assignee: Aixtron AGInventors: Bernd Schottker, Michael Heuken, Holger Jürgensen, Gerd Strauch, Bernd Wachtendorf
-
Patent number: 7465354Abstract: A process, for patterning a thin film that is highly resistant to conventional etching processes and that is to be deposited at a high substrate temperature, is disclosed. The process uses a liftoff method wherein a refractory material has been substituted for the conventional organic resin. The method is particularly useful for the fabrication of tunable microwave devices and ferroelectric memory elements.Type: GrantFiled: March 8, 2005Date of Patent: December 16, 2008Assignee: National University of SingaporeInventors: Chong Kim Ong, Chin Yaw Tan
-
Patent number: 7459024Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.Type: GrantFiled: October 29, 2004Date of Patent: December 2, 2008Assignee: Apollo Diamond, Inc.Inventors: Robert C. Linares, Patrick J. Doering
-
Patent number: 7438760Abstract: Methods of making Si-containing films that contain relatively high levels of substitutional dopants involve chemical vapor deposition using trisilane and a dopant precursor. Extremely high levels of substitutional incorporation may be obtained, including crystalline silicon films that contain 2.4 atomic % or greater substitutional carbon. Substitutionally doped Si-containing films may be selectively deposited onto the crystalline surfaces of mixed substrates by introducing an etchant gas during deposition.Type: GrantFiled: January 30, 2006Date of Patent: October 21, 2008Assignee: ASM America, Inc.Inventors: Matthias Bauer, Keith Doran Weeks, Pierre Tomasini, Nyles Cody
-
Patent number: 7431766Abstract: Processing and systems to create, and resulting products related to, very small-dimension singular, or monolithically arrayed, mechanical devices. Processing is laser-performed in relation to a selected material whose internal crystalline structure becomes appropriately changed thereby to establish the desired mechanical properties for a created device.Type: GrantFiled: September 14, 2005Date of Patent: October 7, 2008Assignee: Sharp Laboratories of America, Inc.Inventor: John W. Hartzell
-
Patent number: 7422633Abstract: The present invention provides a process for forming a bulk monocrystalline gallium-containing nitride, i.e. GaN etc., on the surface of heterogeneous substrate, i.e. SiC etc., comprising the steps of forming a supercritical ammonia solvent containing ion or ions of alkali metals in an autoclave, dissolving a gallium-containing feedstock in the supercritical ammonia solvent to form a supercritical solution in which the feedstock is dissolved, and crystallizing gallium-containing nitride on the face of a seed which contains no element of oxygen and has a lattice constant of 2.8 to 3.6 with respect to ao-axis from the supercritical solution, under a condition of a higher temperature and/or a lower pressure than the temperature and/or the pressure where the gallium-containing feedstock is dissolved in the supercritical solvent. Therefore nitride gallium system compound semiconductor device can be formed on a conductive substrate.Type: GrantFiled: June 6, 2002Date of Patent: September 9, 2008Assignees: Ammono SP. ZO. O., Nichia CorporationInventors: Robert Dwilinski, Roman Doradzinski, Jerzy Garczynski, Leszek Sierzputowski, Yasuo Kanbara
-
Patent number: 7413430Abstract: The upper block 12 contacts the bearing block 20, and the bearing block 20 is coupled to the upper plate 21. The upper block 12 has a protruding part 22 on the upper surface that is worked into a convex surface with a radius of R1, and the bearing block 20 has a recessed part 23 in the undersurface that is worked into a concave surface with a radius of R2 (R2>R1). As a result of such a construction being used, the pressing surface of the upper pressing plate 15 always conforms to the surface of the quartz crystal substrate 11 during pressing, so that a uniform load is applied to the quartz crystal substrate 11. As a result, the surface of the quartz crystal can be uniformly pressed in the hot pressing method.Type: GrantFiled: September 18, 2003Date of Patent: August 19, 2008Assignee: National Institute for Materials ScienceInventors: Sunao Kurimura, Masaki Harada
-
Patent number: 7413607Abstract: Composite particles of a semiconductor particle such as a metal chalcogenide within a crosslinked, cored dendrimer are described. Additionally, methods of making the composite particles and compositions that contain the composite particles are described.Type: GrantFiled: March 31, 2005Date of Patent: August 19, 2008Assignee: 3M Innovative Properties CompanyInventors: Neal A. Rakow, Michael S. Wendland, Mary I. Buckett
-
Patent number: 7404857Abstract: An improved method for synthesizing superabrasive particles provides high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method includes forming a substantially homogeneous mixture of raw material and catalyst material or layers of raw material and metal catalyst. A plurality of crystalline seeds is placed in a predetermined pattern in the mixture or one of the layers to form a growth precursor. The growth precursor is maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. Advantageously, the patterned placement of crystalline seeds and disclosed processes allow for production of various morphologies of synthetic diamonds, including octahedral and cubic diamonds, and improved growth conditions generally. As a result, the grown superabrasive particles typically have a high yield of high quality particles and a narrow distribution of particle sizes.Type: GrantFiled: August 25, 2004Date of Patent: July 29, 2008Inventor: Chien-Min Sung
-
Patent number: 7399357Abstract: A method for the controlled growth of thin films by atomic layer deposition by making use of multilayers and using energetic radicals to facilitate the process is described in this invention. In this method, a first reactant is admitted into the reaction chamber volume, where there is a substrate to be coated. This first reactant then adsorbs, in a self-limiting process, onto the substrate to be coated. After removing this first reactant from the reaction chamber volume, leaving a layer coating the substrate, a second reactant is then admitted into the reaction chamber volume, which adsorbs onto this initial layer in a self-limiting process. The second reactant is then also removed from the reaction chamber volume. Following this procedure a self-limited multilayer of unreacted species remains adsorbed on the substrate to be coated. If additional chemical species are desirable, these exposures and removals could be continued. Next this multilayer is exposed to a flux of radicals.Type: GrantFiled: May 8, 2003Date of Patent: July 15, 2008Inventor: Arthur Sherman
-
Patent number: 7396411Abstract: A method for manufacturing a single crystal includes the steps of: flowing a raw material gas toward a seed crystal in a reactive chamber so that the single crystal grows from the seed crystal; controlling the raw material gas by a gas flow control member having a cylindrical shape; passing the raw material gas through a clearance between the seed crystal and an inner wall of the gas flow control member; and flowing a part of the raw material gas to bypass the seed crystal. The method provides the single crystal having good quality.Type: GrantFiled: March 21, 2006Date of Patent: July 8, 2008Assignees: DENSO CORPORATION, National Institute of Advanced Industrial Science and TechnologyInventors: Tomohisa Kato, Shinichi Nishizawa, Fusao Hirose
-
Patent number: 7396409Abstract: By uniformly forming an indefinite number of microscopic acicular crystals on a surface of a silicon substrate so as to be perpendicular to the surface of the substrate by plasma CVD method using a catalyst, it is possible to reliably, homogeneously and massively form an ultramicroscopic acicular silicon crystal having a substantial cone shape tapered so as to have a radius of curvature of not less than 1 nm to no more than 20 nm at its tip end and having a diameter of bottom surface of not less than 10 nm, and a height equivalent to or more than the diameter of bottom surface, at a desired location.Type: GrantFiled: September 4, 2003Date of Patent: July 8, 2008Assignees: Covalent Materials Corporation, Techno Network Shikoku Co., Ltd.Inventors: Akitmitsu Hatta, Hiroaki Yoshimura, Keiichi Ishimoto, Hiroaki Kanakusa, Shinichi Kawagoe
-
Patent number: 7393410Abstract: There is provided a method of manufacturing a nano-wire using a crystal structure. In the method of manufacturing a nano-wire, a crystal grain having a plurality of crystal faces is used as a seed, and a crystal growing material having a lattice constant difference within a predetermined range is deposited on the crystal grain, thereby allowing the nano-wire to grow from at least one of the crystal faces. Therefore, it is possible to give the positional selectivity with a simple process using a principle of crystal growth and to generate a nano-structure such as a nano-wire, etc. having good crystallinity. Further, it is possible to generate a different-kind junction structure having various shapes by adjusting a feature of a crystal used as a seed.Type: GrantFiled: April 26, 2005Date of Patent: July 1, 2008Assignee: Samsung SDI Co., Ltd.Inventors: Sang-Hyun Lee, Tae-Won Jeong, Jeong-Na Huh
-
Patent number: 7393411Abstract: A method for growing a ?-Ga2O3 single crystal hardly cracking and having a weakened twinning tendency and an improved crystallinity, a method for growing a thin-film single crystal with high quality, a GazO3 light-emitting device capable of emitting a light in the ultraviolet region, and its manufacturing method are disclosed. In an infrared-heating single crystal manufacturing system, a seed crystal and polycrystalline material are rotated in mutually opposite directions and heated, and a ?-Ga2O3 single crystal is grown in one direction selected from among the a-axis <100> direction, the b-axis <010> direction, and the c-axis <001> direction. A thin film of a ?-Ga2O3 single crystal is formed by PLD. A laser beam is applied to a target to excite atoms constituting the target Ga atoms are released from the target by thermal and photochemical actions. The free Ga atoms are bonded to radicals in the atmosphere in the chamber.Type: GrantFiled: February 16, 2004Date of Patent: July 1, 2008Assignee: Waseda UniversityInventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
-
Patent number: 7390360Abstract: Compositions useful in the manufacture of compound semiconductors are provided. Methods of manufacturing compound semiconductors using these compositions are also provided.Type: GrantFiled: September 28, 2005Date of Patent: June 24, 2008Assignee: Rohm and Haas Electronic Materials LLCInventors: Deodatta Vinayak Shenai-Khatkhate, Egbert Woelk
-
Patent number: 7384479Abstract: An optical semiconductor device operable in a 0.6 ?m band includes an active layer of GaInNP sandwiched by a pair of GaInP layer with a thickness of about 2 molecular layers or less.Type: GrantFiled: March 16, 2005Date of Patent: June 10, 2008Assignee: Ricoh Company, Ltd.Inventors: Naoto Jikutani, Shunichi Sato, Takashi Takahashi
-
Patent number: 7384835Abstract: Disclosed are embodiments of a MOSFET with defined halos that are bound to defined source/drain extensions and a method of forming the MOSFET. A semiconductor layer is etched to form recesses that undercut a gate dielectric layer. A low energy implant forms halos. Then, a COR pre-clean is performed and the recesses are filled by epitaxial deposition. The epi can be in-situ doped or subsequently implanted to form source/drain extensions. Alternatively, the etch is immediately followed by the COR pre-clean, which is followed by epitaxial deposition to fill the recesses. During the epitaxial deposition process, the deposited material is doped to form in-situ doped halos and, then, the dopant is switched to form in-situ doped source/drain extensions adjacent to the halos. Alternatively, after the in-situ doped halos are formed the deposition process is performed without dopants and an implant is used to form source/drain extensions.Type: GrantFiled: May 25, 2006Date of Patent: June 10, 2008Assignee: International Business Machines CorporationInventors: Huajie Chen, Judson R Holt, Rangarajan Jagannathan, Wesley C Natzle, Michael R Sievers, Richard S Wise
-
Patent number: 7384476Abstract: A method for crystallizing silicon is provided. The method includes: forming an amorphous silicon layer on a substrate; aligning a mask above the substrate, the mask being divided into a plurality of blocks, each block having at least two transmission patterns, the transmission patterns of one block and the transmission patterns of another adjacent block being complimentary with each other and the mask including at least two diffraction patterns disposed between the transmission patterns; forming a first crystallization region on the amorphous silicon layer by irradiating a laser beam through the transmission patterns of the mask; and displacing the substrate or the mask by a predetermined distance and irradiating a laser beam onto the substrate to recrystallize the crystallization region using the laser beam that passes through the diffraction patterns, and forming a second crystallization region using the laser beam that passes through the transmission patterns.Type: GrantFiled: May 24, 2004Date of Patent: June 10, 2008Assignee: LG Display Co., Ltd.Inventor: JaeSung You
-
Patent number: 7384478Abstract: A process for preparing crystalline particles, especially particles of a pharmaceutical or carrier substance suitable for inhalation therapy, in addition to apparatus for the preparation of such particles.Type: GrantFiled: January 21, 2003Date of Patent: June 10, 2008Assignee: Glaxo Group LimitedInventor: Hardev Singh
-
Patent number: RE40647Abstract: The first object of the present invention is to provide a PDP with improved panel brightness which is achieved by improving the efficiency in conversion from discharge energy to visible rays. The second object of the present invention is to provide a PDP with improved panel life which is achieved by improving the protecting layer protecting the dielectrics glass layer. To achieve the first object, the present invention sets the amount of xenon in the discharge gas to the range of 10% by volume to less than 100% by volume, and sets the charging pressure for the discharge gas to the range of 500 to 760 Torr which is higher than conventional charging pressures. With such construction, the panel brightness increases. Also, to achieve the second object, the present invention has, on the surface of the dielectric glass layer, a protecting layer consisting of an alkaline earth oxide with (100)-face or (110)-face orientation.Type: GrantFiled: November 29, 2001Date of Patent: March 10, 2009Assignee: Matsushita Electric Industrial Co., Ltd.Inventors: Masaki Aoki, Hideo Torii, Eiji Fujii, Mitsuhiro Ohtani, Takashi Inami, Hiroyuki Kawamura, Hiroyoshi Tanaka, Ryuichi Murai, Yasuhisa Ishikura, Yutaka Nishimura, Katsuyoshi Yamashita