Patents Examined by Robert R. Raevis
  • Patent number: 10753833
    Abstract: Systems, devices, and methods are described herein for a mobile scientific or measuring platform. In one aspect, a mobile scientific platform may include a vehicle having an electric energy source and a measuring device, such as a mass spectrometer, coupled to the electric energy source. An input line may be coupled to the measuring device and one or more sample collectors, for example, for obtaining gas samples. In some aspects, the input line may include a heating element configured to maintain a line temperature that is equal to or above the temperature of the samples collected, to reduce or prevent the formation of condensates in collected samples. In some aspects, the mobile scientific platform may run, or be switched to run, on electric, propone, compressed natural gas, or other similar fuel to enable the collection of gas samples free of (or having reduced levels of) vehicle caused contamination.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: August 25, 2020
    Assignee: ENVIROLYTICS, LLC
    Inventor: Alan W. Joseph, Jr.
  • Patent number: 10753841
    Abstract: A diffusion system to improve the efficiency, accuracy, and consistency of testing the release rate of an active ingredient in semisolid form through a membrane in between a dosage lid and a cell cap mounted on a cell in which a mixer is placed to mix the receptor medium in the cell as the semisolid diffuses through the membrane. The cell can be placed in a heating system to heat the samples. The cell has a sampling arm through which samples of the receptor medium can be extracted without opening the cell cap and dosage lid. The mixer may be cylindrical and may occupy a large surface area of the cell. The mixer may have grooves and other irregularities to increase turbulence while mixing. The system can be automated using an automated sampling and collection station.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 25, 2020
    Assignee: TELEDYNE INSTRUMENTS, INC.
    Inventors: Steven W. Shaw, Gary C. Downes
  • Patent number: 10753919
    Abstract: According to one embodiment described herein, the forces of a shrink film may be measured. The method of measuring the forces may include providing a shrink film processing unit and a testing vehicle moveable within the shrink film processing unit, positioning a shrink film around the testing vehicle, processing the wrapped testing vehicle by shrinking the shrink film around the testing vehicle as the testing vehicle moves through the shrink film processing unit, and measuring the forces applied by the shrink film on the testing vehicle with one or more force sensors at multiple separate sensor positions on the exterior of the testing vehicle during processing, after processing, or both.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: August 25, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Lawrence J. Effler, Jr., Rashi Tiwari, Matthew J. Turpin, Robert R. Cummer, Lyndi R. Kennedy
  • Patent number: 10751680
    Abstract: An apparatus, method and system providing for calibration and/or control of a liquid dispensing system is disclosed. The hand-held calibration auditing tool includes a flow meter (36-37) with inlets adapted for quick connection to one or more liquid inputs to a liquid dispensing system (10). A sensor (94-95) having a data output of liquid flow information for a liquid input to the dispensing system (10) is operably connected to a controller (12) to receive the liquid flow information for the liquid input. The controller (12) provides a dilution rate and other liquid flow information for a liquid product input to a dispenser.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: August 25, 2020
    Assignee: Ecolab USA Inc.
    Inventors: Henry L. Carbone, II, Richard J. Mehus, Kevin C. Tauer, Anatoly Skirda, Eugene Tokhtuev, William M. Christensen
  • Patent number: 10753817
    Abstract: A testing apparatus for minimizing runout of a rotating assembly includes a measurement device and a runout evaluator. The measurement device measures a distance to a surface. The runout evaluator obtains a first runout of a surface of a first member of the rotating assembly from the measurement device. The first runout has a magnitude and a phase. The runout evaluator obtains a second runout of a surface of a second member of the rotating assembly from the measurement device. The second runout has a magnitude and a phase. The runout evaluator determines a rotational position of the first member relative to the second member which results in a reduced runout of the rotating assembly. The determination of the rotational position is based on the magnitude and the phase of the first runout and the magnitude and the phase of the second runout.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: August 25, 2020
    Assignee: YASKAWA AMERICA, INC.
    Inventors: John Charles Rogers, Clark Thomas Tella
  • Patent number: 10753742
    Abstract: A micromechanical rate-of-rotation sensor includes a first Coriolis element. The micromechanical rate-of-rotation sensor further includes a first drive beam arranged along the first Coriolis element. The first drive beam is coupled via a first spring to the first Coriolis element. The micromechanical rate-of-rotation sensor further includes a first drive electrode carrier extending from the first drive beam in a direction opposite to the first Coriolis element. The first drive electrode carrier is configured to carry a multiplicity of first drive electrodes extending parallel to the first drive beam.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: August 25, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Reinhard Neul, Torsten Ohms, Robert Maul, Mirko Hattass, Christian Hoeppner, Odd-Axel Pruetz, Benjamin Schmidt, Rolf Scheben, Friedjof Heuck
  • Patent number: 10739324
    Abstract: An improved NOx sensor with an NH3 oxidation. A sensor module may include a support component, a NOx sensing material positioned on the support component, and an NH3 oxidation catalyst. The NH3 oxidation catalyst may be layered on top of the NOx sensing material or the NH3 oxidation catalyst may be positioned upstream of the NOx sensing material such that the NH3 oxidation catalyst selectively converts NH3 to N2 while permitting NOx through to the NOx sensing material.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: August 11, 2020
    Assignee: Cummins Emission Solutions, Inc.
    Inventor: Behnam Bahrami
  • Patent number: 10739375
    Abstract: An acceleration measuring device includes a piezoelectric system, a seismic mass, and a base plate. During acceleration of the device, the seismic mass exerts onto the piezoelectric system a force that is proportional to the acceleration of the device. The force causes the piezoelectric system to generate piezoelectric charges that can be electrically processed as acceleration signals. The piezoelectric system includes two system elements, and the seismic mass correspondingly includes two mass elements. The device includes a preloading assembly that mechanically preloads the system elements against the mass elements.
    Type: Grant
    Filed: November 24, 2016
    Date of Patent: August 11, 2020
    Assignee: KISTLER HOLDING AG
    Inventor: Flavio Rosa
  • Patent number: 10732198
    Abstract: An electromechanical system (MEMS) accelerometer is described. The MEMS accelerometer may be configured to sense linear acceleration along one, two or three axes, and to sense angular acceleration about one, two or three axes. As such, the MEMS accelerometer may serve as 2-axis, 3-axis, 4-axis, 5-axis or 6-axis inertial accelerometer. In some embodiments, the MEMS accelerometer may comprise a single mass connected to at least one anchor via a plurality of tethers. In other embodiments, the MEMS accelerometer may comprise a proof mass connected to at least one anchor via a plurality of tethers and one or more shuttle masses connected to the proof mass via a second plurality of tethers. Rotational and linear motion of the MEMS accelerometer may be sensed using capacitive sensors.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: August 4, 2020
    Assignee: Analog Devices, Inc.
    Inventor: Xin Zhang
  • Patent number: 10726742
    Abstract: Systems and methods are described herein for producing a model of a biological tissue, comprising a primary elastic material formed in the shape of an organ, and a secondary stiffener material embedded in the primary elastic material, wherein the secondary stiffener material is formed into a metamaterial design that increases the elastic modulus of the model in at least one predetermined direction. Models in accordance with embodiments mimic both the shape and mechanical properties of the organ they depict.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: July 28, 2020
    Assignee: Georgia Tech Research Corporation
    Inventors: Kan Wang, Zhen Qian, Chun Zhang, Changsheng Wu, Ben Wang, Mani A. Vannan
  • Patent number: 10725003
    Abstract: Embodiments relate generally to systems and methods for completing processes on a gas detector device using near-field communication between the gas detector device and an NFC tag. The NFC tag may communicate instructions or information to the gas detector device. The NFC tag may be located on or near a gas testing system, comprising gas deliver tube(s), gas tank(s), as well as other elements. In some embodiments, the gas detector device may comprise a single button to simplify interactions with the user.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: July 28, 2020
    Assignee: Honeywell International Inc.
    Inventors: Kirk William Johnson, Kelly Englot, Stephen Mroszczak
  • Patent number: 10725060
    Abstract: A method of tube slot localization is provided using a tray coordinate system and a camera coordinate system. The method includes receiving, a series of images from at least one camera of a tray comprising tube slots arranged in a matrix of rows and columns. Each tube slot is configured to receive a sample tube. The method also includes automatically detecting fiducial markers disposed on cross sectional areas between the tube slots on the tray and receiving an encoder value indicating when each row of the tray is substantially at the center of the camera's field of view. The method further includes determining calibration information to provide mapping of locations from the tray coordinate system to locations from the camera coordinate system and automatically aligning the tray based on the encoder value and calibration information.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: July 28, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Patrick Wissmann, Wen Wu, Guillaume Dumont, Benjamin Pollack, Terrence Chen
  • Patent number: 10718743
    Abstract: A liquid chromatography (LC) column includes a wall having a length along a central axis from the inlet end to the outlet end, the wall enclosing a column interior and having a column radius relative to the central axis, the wall comprising a structured portion configured such that the column radius varies along the length; and a plurality of particles packed in the column interior, wherein at least some of the particles are in contact with the structured portion.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: July 21, 2020
    Assignee: Agilent Technologies, Inc.
    Inventors: Hongfeng Yin, Reid A. Brennen, Eric Lyster, Roger Slocum
  • Patent number: 10712243
    Abstract: An insertion-type probe main body for insertion into a pipe transporting gas and a method for making such an insertion-type probe main body are provided. The probe main body includes: an elongate upper tubular portion; an elongate lower tubular portion which is integral with and having a diameter smaller than the upper tubular portion; a bore which extends between the upper and lower tubular portions; and helical fins integrally formed on the lower tubular portion and which wind along and around an outer surface of the lower tubular portion and which overlap each other. A radial extension of the lower tubular portion plus helical fins corresponds to an external radius of the upper tubular portion, so that the helical fins extend in a streamline fashion from the upper tubular portion. Numerous other aspects are provided.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: July 14, 2020
    Assignee: EnDet Limited
    Inventor: Jeremy Knight
  • Patent number: 10712359
    Abstract: A flexure for a MEMS device includes an elongated beam and a protrusion element extending outwardly from a sidewall of the elongated beam. A MEMS inertial sensor includes a movable element spaced apart from a surface of a substrate, an anchor attached to the substrate, and a spring system. The spring system includes first and second beams, a center flexure between the first and second beams, a first end flexure interconnected between an end of the first beam and the anchor, and a second end flexure interconnected between an end of the second beam and the movable element. Each of the end flexures includes the elongated beam having first and second ends, and the sidewall defining a longitudinal dimension of the elongated beam, and the protrusion element extending from the sidewall of the elongated beam, the protrusion element being displaced away from the first and second ends of the beam.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: July 14, 2020
    Assignee: NXP USA, Inc.
    Inventor: Andrew C. McNeil
  • Patent number: 10712324
    Abstract: A device (1) includes a pumping device (7) and a control unit (70) and is configured to test the operational capability of a gas guide element (3) in a gas-measuring system (11) that includes a gas sensor (5). The control unit (70) carries out steps with two operating states including delivering a test gas (91) by the pumping device (7) through the gas guide element (3) to a remote measuring location (80) and is subsequently delivered from the measuring location (80) to the gas sensor (5). Measured values of a gas concentration are detected by the gas sensor (5) during the delivery from the remotely located measuring location (80) to the gas sensor (5) and analyzed to determine whether changes occurring in the detected gas concentration during the delivery from the measuring location (80) to the gas sensor (5) indicate whether the gas guide element (3) is capable of operating.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 14, 2020
    Assignee: DRÄGERWERK AG & CO. KGAA
    Inventors: Hans-Ullrich Hansmann, Henning Gerder
  • Patent number: 10704909
    Abstract: A rotation rate sensor including a substrate having a principal plane of extension, and a structure movable with respect to the substrate; the structure being excitable from a neutral position into an oscillation having a movement component substantially parallel to a driving direction, which is substantially parallel to the principal plane of extension. To induce the oscillation, the rotation rate sensor includes a comb electrode moved along with the structure and a comb electrode fixed in position relative to the substrate. The excitation is produced by applying a voltage to the moving comb electrode and/or to the stationary comb electrode. Due to a rotation rate of the rotation rate sensor about an axis running substantially perpendicularly to the driving direction and substantially perpendicularly to the detection direction, a force applied to the structure with a force component along a detection direction substantially perpendicular to the driving direction is detectable.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: July 7, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Patrick Wellner, Burkhard Kuhlmann, Mirko Hattass
  • Patent number: 10704409
    Abstract: In one example embodiment, a fluid induced instability detection system is provided that monitors various vibration characteristics of a turbomachine, collects vibration data in real-time, and uses the vibration data to detect and analyze changes in various operating parameters such as vibration, speed, and loading conditions, and to provide an indication of a vibration anomaly and/or potential operational risk in one or more components of the turbomachine. The vibration data can be particularly associated with certain components that are directly or indirectly impacted by a modification in process fluid flow characteristics or lubrication oil flow characteristics in the turbomachine due to various reasons such as process fluid flow disturbances, lubricating oil flow disturbances, and/or a change in turbomachine operational parameters. The fluid induced instability detection system detects abnormalities in the vibration data and provides an indication of one or more potential faults in the turbomachine.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: July 7, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Edward Michel, Kiran Vangari, Scott Wood, Timothy Maker
  • Patent number: 10690570
    Abstract: A system for on-stream sampling of pressurized process gas such as natural gas or the like, said system optimized for use with pressurized process gas having liquid entrained therein, or otherwise referenced as “wet”. In the preferred embodiment, a probe and method of sampling is contemplated to provide linear sample of fluids from a predetermined of said fluid stream. Further taught is the method of preventing compositional disassociation of a gas sample having entrained liquid utilizing a probe having a passage formed to facilitate capillary action in fluid(s) passing therethrough. The present system further contemplates a system for providing power and/or heat to modular conditioning components as well provide sample flow therefrom utilizing a tube bundle via a tube bundle boot mounted on the bracket of a modular sample system.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 23, 2020
    Assignee: MAYEAUX HOLDING, LLC
    Inventor: Valmond Joseph St Amant, III
  • Patent number: 10688343
    Abstract: A measuring method for maximum muscle strength may be applied to a muscle training device and a user of the device. The muscle training device may include a control unit, an operation display unit, and a drag unit. The measuring method assists the user to measure their maximum strength on the muscle training device by themself, and this knowledge is helpful in designing and adjusting a muscle training schedule and to evaluate the resulting progress.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: June 23, 2020
    Assignee: Strength Master Fitness Tech. Co., Ltd.
    Inventors: Ming-Chu Su, Shu-Yao Wu, Pei-Hsuan Chang