Patents Examined by Robert R. Raevis
  • Patent number: 10684393
    Abstract: A rain gauge that allows freezing and thawing of rain or ice without damage is described. The rain gauge is comprised of a vessel and an elastic insert. As the rain inside the gauge freezes, the elastic insert compresses, displacing the increased volume of the ice. When the ice melts, the compression of the elastic insert reverses, thus leaving the device unharmed.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 16, 2020
    Inventor: Donald Sahlem
  • Patent number: 10682124
    Abstract: A method for collecting and analyzing urine at the time it is released uses a urine collecting tube joined with a canister. Suction is produced in the collecting tube to join the tube with a penis or to the exterior surface of a female urethra orifice. Once suction is achieved the collecting tube stays in place by suction action. When urine flows into the urine collecting tube a sensor triggers a vacuum pump to produce a higher level of suction to flush the urine into the canister where a level sensor determines the quantity of urine received. Various sensors in the canister determine levels of non-urine partials such as occult blood, drugs, salt, and other substances. When urine is no longer detected within the urine tube, the vacuum pump is turned off and a low-level vacuum remains to assure interconnection with the urine tube.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: June 16, 2020
    Assignee: Ur24 Technology, LLC
    Inventor: Landon Duval
  • Patent number: 10684197
    Abstract: Disclosed is a rolling unit (8) for a test rig (1) for testing an automatic underground train, including: two rolling belts (27), each one provided for a wheel (6) of the train to roll thereon, the wheels driving the movement of the belts; and a rotary inertial body (28); each belt including: a pinion (31) that is rotatably connected to the inertial body; two rollers (33); and a grooved rolling surface (32) mounted on the rollers, meshed with the pinion, and forming a rolling area (34) for a respective wheel between the rollers.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: June 16, 2020
    Assignees: SPHEREA TEST & SERVICES, SEREME
    Inventors: Francois Decobert, Yannick Le Guennec, Thomas Diego Raymond Gautier
  • Patent number: 10677594
    Abstract: A microelectromechanical systems (MEMS) device comprises an optical directional coupler comprising: a first waveguide having a first and a second end, wherein a light beam is introduced into the first end; a second waveguide having a third and a fourth end, wherein the light beam is evanescently coupled between the two waveguides in the central region; a first photodetector to detect first optical power in the light beam at the second end; and a second photodetector to detect second optical power in the light beam at the fourth end; a vibrating proof mass adjacent to the coupler in a first direction from the coupler, wherein when inertial forces are applied to the MEMS device in a second direction, the proof mass moves in the first direction; a processor to determine the displacement of the proof mass from the coupler as a function of the first and the second optical power.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: June 9, 2020
    Assignee: Honeywell International Inc.
    Inventors: Jan Scheirich, Tomas Neuzil, Martin Vagner
  • Patent number: 10670426
    Abstract: A line sensor includes a sensor cord including a resilient hollow insulator and two electrical wires arranged along an inner circumferential surface of the hollow insulator in an electrically non-contact state with each other, a constant current source which is connected to one of the two electrode wires at one end of the sensor cord, and a detecting device for detecting a pressed position. The other electric wire is grounded at the other end of the sensor cord. The two electric wires include a resistance wire having a resistance of 1 k?/m or more. The detecting device detects a voltage of the resistance wire at one end of the sensor cord to detect the pressed position in a longitudinal direction of the sensor cord based on the detected voltage.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 2, 2020
    Assignee: HITACHI METALS, LTD.
    Inventor: Yukio Ikeda
  • Patent number: 10670618
    Abstract: Provided is an automated analysis device equipped with a lid opening/closing mechanism with which it is possible to selectively open or close lids of a plurality of reagent containers, as well as to close all of the lids of the plurality of reagent containers, regardless of their current open/closed state. Each of a plurality of hooks 102 rotatably linked to a hook base part 104 has: a claw portion 203 which, when oriented to engage with a lid 101, causes force to act on the lid 101 in the opening direction; a basal part 202 which, when oriented to engage with the lid 101, causes force to act on the lid in the closing direction; and a closing protrusion 201 which, when oriented not to engage with the lid 101, causes force to act on the lid in the closing direction.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: June 2, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Takushi Miyakawa, Kazuhiro Noda, Yukinori Sakashita
  • Patent number: 10670499
    Abstract: Disclosed is a station, for testing an analyte in a sample, enabling accurate and quick reaction and analysis of the sample and a reagent in one apparatus. To this end, the present disclosure provides a station, which is for testing a sample by means of inserting a cuvette, having a standby chamber on which a collecting member is placed, a sample chamber, a reagent chamber and a detection unit. The station comprises: a housing which has an input/output part into which a cuvette is inserted; a driving unit which is provided inside the housing, horizontally moves the cuvette, vertically moves a collecting member, reacts a sample in a sample chamber and a reagent in a reagent chamber, and injects a reaction result thereof into a detection unit; and an optical reader which is provided on the horizontal movement path of the cuvette and is for analyzing the reaction result.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: June 2, 2020
    Assignee: BODITECH MED INC.
    Inventors: Byeong Chul Kim, Bong Suk Moon, Younghaeng Lee, Ju Hyoung Bang, Nam Chul Ha, Jae Un An
  • Patent number: 10662766
    Abstract: A dynamic testing system for sealing devices includes a shaft that is reciprocated in a bore through a body. The shaft includes a first seal assembly and a second seal assembly disposed a distance apart on the shaft. When the shaft is inserted into the bore, the first seal assembly and the second seal assembly form a fluid-tight seal between the external surface of the shaft and the internal surface of the bore—this forms a fluid-tight cavity between the seal assemblies. Sealing devices in each of the first seal assembly and the second seal assembly experience chemical attack and mechanical wear. One or more axial force measurement sensors measure the force applied by a prime mover to reciprocate the shaft within the bore. Data acquisition circuitry collects the force information and generates a graphical output that plots friction force against reciprocating cycle count.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: May 26, 2020
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Nigil Satish Jeyashekar, Peter Mark Lee
  • Patent number: 10663340
    Abstract: Disclosed are a method, device and system for determining a flow rate of an excretion stream within an excretion collection assembly. According to some embodiments of the present invention, one of the constituent elements of the collection assembly includes a sensing module which includes an electrical and/or electromechanical component.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: May 26, 2020
    Assignee: Fize Research LTD.
    Inventor: Noam Levine
  • Patent number: 10663367
    Abstract: A method, a system and an apparatus for adaptively sensing a gas leak. The method includes: obtaining wind data from a wind sensor, identifying at least one wireless mote in a plurality of wireless motes that is most likely to detect a gas plume from the wind data, activating the identified at least one wireless mote to trigger measuring gas concentration of the gas plume, and identifying the location of the gas leak if the gas concentration is above a predetermined threshold. Also included is a system for adaptively sensing a gas leak having a wind sensor, a plurality of wireless motes and a server in communication therewith. An apparatus for adaptively sensing a gas leak in an industrial site is also provided.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: May 26, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthias Dittberner, Levente Klein
  • Patent number: 10655965
    Abstract: A rotation rate sensor having a first structure movable with respect to the substrate, a second structure movable with respect to the substrate and with respect to the first structure, a first drive structure for deflecting the first structure with a motion component parallel to a first axis, and a second drive structure for deflecting the second structure with a motion component parallel to the first axis. The first and second structures are excitable to oscillate in counter-phase, with motion components parallel to the first axis, the first drive structure having a first spring mounted on the substrate to counteract a pivoting of the first structure around an axis parallel to a second axis extending perpendicularly to a principal extension plane, the second drive structure having a second spring mounted on the substrate to counteracts a pivoting of the second structure around a further axis parallel to the second axis.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: May 19, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Benjamin Schmidt, Andreas Lassl, Burkhard Kuhlmann, Christian Hoeppner, Mirko Hattass, Thorsten Balslink
  • Patent number: 10648963
    Abstract: A testing device (1) is configured for testing a gas guide element (3). A control unit (70) carries out a sequence of steps with two operating states. A test gas (91) is delivered by a pumping device (7) through the gas guide element (3) to a remotely located measuring location (80) and is subsequently delivered from the remotely located measuring location (80) to the gas sensor system (5). Measured values (77) are detected and analyzed during the delivery from the remotely located measuring location (80) to the gas sensor system (5) by a sensor (6, 90), which indicates a state of flow in the gas guide element (3) or an operating state of the pumping device (7). Changes occurring in the measured values (77) during the delivery from the remotely located measuring location (80) to the gas sensor system (5) indicate the operational capability of the gas guide element (3).
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: May 12, 2020
    Assignee: DRÄGERWERK AG & CO. KGAA
    Inventors: Hans-Ullrich Hansmann, Henning Gerder
  • Patent number: 10646866
    Abstract: Provided is a microparticle measurement device that can deliver a liquid used in the analysis of microparticles in a stable manner. The microparticle measurement device includes a plurality of first tank units to which a liquid is supplied from the outside, and which are respectively connected in parallel, and a bulb unit that is connected to the plurality of first tank units, and which switches to a state in which it is possible to deliver the liquid to a flow channel through which microparticles flow. According to this microparticle measurement device, in addition to performing liquid delivery from a portion of the plurality of first tank units, in which the replenishment of liquid has been completed, to a flow channel, it is possible to supply liquid from the outside to the plurality of first tank units other than the plurality of first tank units that are delivering liquid.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: May 12, 2020
    Assignee: SONY CORPORATION
    Inventor: Yosuke Muraki
  • Patent number: 10649002
    Abstract: Techniques for self-adjusting calibration of offset and sensitivity of a MEMS accelerometer are provided. In one example, a system comprises a first microelectromechanical (MEMS) sensor. The first MEMS sensor comprises: a proof mass coupled to an anchor connected to a reference plane, wherein the proof mass is coupled to the anchor via a first spring and a second spring; a plurality of reference paddles coupled to the anchor; and a plurality of acceleration sensing electrodes disposed on the reference plane, wherein a first area of each of the acceleration sensing electrodes is larger than a second area of each of a plurality of reference electrodes associated with the plurality of reference paddles.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: May 12, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Joseph Seeger, Sarah Nitzan
  • Patent number: 10641687
    Abstract: A system for on-stream sampling of pressurized process gas such as natural gas or the like, said system optimized for use with pressurized process gas having liquid entrained therein, or otherwise referenced as “wet”. In the preferred embodiment, a probe and method of sampling is contemplated to provide a linear sample of fluids from a predetermined area of said fluid stream. Further taught is the method of preventing compositional disassociation of a gas sample having entrained liquid utilizing a probe having a passage formed to facilitate capillary action in fluid(s) passing therethrough. The present system further contemplates a unique modular vaporizing pressure regulator formed to electrically engage a tube bundle via a tube bundle boot mounted on the bracket of a modular sample system in order to dispense with the need for conduit normally required for a separate power cord.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: May 5, 2020
    Assignee: MAYEAUX HOLDING, LLC
    Inventor: Valmond Joseph St Amant, III
  • Patent number: 10632460
    Abstract: A pipetting device has a pipetting channel extending along a channel path, in which a piston is accommodated to be movable along the channel path to change the pressure of a working gas that wets the piston on a dosing side facing the dosing liquid. The pipetting device includes a movement drive for driving the piston along the channel path and a control unit configured to operate the movement drive for pipetting a predetermined single dosing volume of less than 5 ?l with the piston moving in the pipetting direction and its dosing side end face sweeping over a pipetting volume which is not less than 1.4 times greater than the single dosing volume, and subsequently moving in a counter pipetting direction and its dosing side end face sweeping over a counter pipetting volume, wherein not more than 50 ms elapse between beginning control signals.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: April 28, 2020
    Assignee: Hamilton Bonaduz AG
    Inventors: Hanspeter Romer, Fridolin Gysel, Urs Lendenmann
  • Patent number: 10634606
    Abstract: An arrangement for measuring gas concentrations in a gas absorption method, wherein the arrangement includes a plurality of light sources, a measuring cell, at least one measuring receiver and an evaluation apparatus. The measuring cell has a narrow, longitudinally-extended beam path with an entrance-side opening diameter B and an absorption length L with L>B, wherein the measuring cell has a gas inlet and a gas outlet wherein a plurality of light sources of different wavelength spectra is grouped into a first light source group wherein an optical homogeniser is interposed between the first light source group and the measuring cell, wherein, in particular, the homogeniser is coupled to the light source group directly or via a common optical assembly.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: April 28, 2020
    Assignee: bluepoint medical GmbH & Co. KG
    Inventor: Bernd Lindner
  • Patent number: 10627226
    Abstract: A sensor calibration tool, in particular for calibrating sensors on a vehicle, includes a vertical rail defining a first axis, and first and second carriage assemblies. The first carriage assembly is supported by the vertical rail, movable along the first axis, and has a horizontal rail defining a second axis transverse to the first axis. The second carriage assembly is supported by the horizontal rail, movable along the second, and has a target mount that releasably supports a calibration target. A calibration tool includes a horizontal rail defining a first axis, a first carriage assembly movable along the first axis, a mounting bar defining a second axis and pivotable about a pivot axis transverse to the first and second axes, and a target mount positioned on the mounting bar. The first carriage assembly and the mounting bar move independently.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: April 21, 2020
    Assignees: Bosch Automotive Service Solutions Inc., Robert Bosch GmbH
    Inventor: Reiner Leikert
  • Patent number: 10627323
    Abstract: A fluid sample bag is composed of a first sheet and a second sheet of flexible polymeric material. Each sheet has an outer peripheral region, an inwardly oriented face and an outwardly oriented face. A continuous seam is located in the outer peripheral regions of the respective first and second sheets of flexible polymeric material, contiguously interposed between the first and second sheets and composed of melted polymeric material derived from the first and second sheets. The fluid sample bag has a gas permeability less than 10 ppm.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: April 21, 2020
    Inventor: William T. Vecere
  • Patent number: 10620013
    Abstract: A testing apparatus (1) for testing a location-based application on a mobile device (14). The apparatus comprises a first platform (10) having a support portion (12) for supporting at least one test mobile device (14); and a support element (20) spaced from the first platform (10). The support element (20) is configured to support a recording device (24) and permit a camera lens on the recording device (24) to view the support portion (12) of the first platform (10).
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: April 14, 2020
    Assignee: SITA Information Networking Computing USA, Inc.
    Inventor: Jerry James Zeephat