Patents Examined by Rodney McDonald
  • Patent number: 8973526
    Abstract: A plasma deposition apparatus includes a cathode assembly including a cathode disk and a water-coolable cathode holder supporting the cathode disk, an anode assembly including a water-coolable anode holder, a substrate mounted on the anode holder to serve as an anode, and a substrate holder mounting and supporting the substrate, and a reactor for applying a potential difference between opposing surfaces of the cathode assembly and the anode assembly under a vacuum state to form plasma of a raw gas. The cathode disk comes into thermal contact with the cathode holder using at least one of a self weight and a vacuum absorption force so as to permit thermal expansion of the cathode disk.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: March 10, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Wook Seong Lee, Young Joon BaiK, Jong-Keuk Park, Gyu Weon Hwang, Jeung-hyun Jeong
  • Patent number: 8968536
    Abstract: A sputtering target for a sputtering chamber comprises a backing plate with a sputtering plate mounted thereon. In one version, the backing plate comprises a circular plate having a front surface comprising an annular groove. The sputtering plate comprises a disk comprising a sputtering surface and a backside surface having a circular ridge that is shaped and sized to fit into the annular groove of the backing plate.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: March 3, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Adolph Miller Allen, Ki Hwan Yoon, Ted Guo, Hong S. Yang, Sang-Ho Yu
  • Patent number: 8968526
    Abstract: There are provided a method for manufacturing a magnetic recording medium which is excellent in terms of both the recording and reproduction characteristics and the thermal fluctuation characteristics without reducing the density and hardness of the perpendicular magnetic layer; a magnetic recording medium; and a magnetic recording and reproducing apparatus with which an excellent recording density is achieved, wherein, in the method for manufacturing the magnetic recording medium, at least a portion of the perpendicular magnetic layer 4 is formed as a magnetic layer having a granular structure that contains Co as a major component and also contains an oxide of at least one nonmagnetic metal selected from the group consisting of Cr, Si, Ta, Al, Ti, W and Mg; a target for forming the perpendicular magnetic layer 4 by the sputtering process is prepared so as to include an oxide of Co and a compound of Co and at least one nonmagnetic metal selected from the group consisting of Cr, Si, Ta, Al, Ti, W and Mg, an
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: March 3, 2015
    Assignees: Showa Denko K.K., Kabushiki Kaisha Toshiba, Tohoku University
    Inventors: Shingo Sasaki, Shin Saito, Migaku Takahashi, Atsushi Hashimoto, Yuzo Sasaki, Gohei Kurokawa, Tomoyuki Maeda, Akihiko Takeo
  • Patent number: 8968527
    Abstract: Micro-fluid ejection devices, methods for making micro-fluid ejection heads, and micro-fluid ejection heads, including a micro-fluid ejection head. One such micro-fluid ejection head has relatively high resistance thin film heaters adjacent to a substrate. The thin film material comprises silicon, metal, and carbon (SiMC wherein M is a metal). Each thin film heater has a sheet resistance ranging from about 100 to about 600 ohms per square and a thickness ranging from about 100 to about 800 Angstroms.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: March 3, 2015
    Assignee: Funai Electric Co., Ltd
    Inventors: Yimin Guan, Stuart Jacobsen, Carl Edmond Sullivan
  • Patent number: 8961745
    Abstract: The plant is suitable to produce a semiconductor film (8) having a desired thickness and consisting substantially of a compound including at least one element for each of the groups 11, 13, and 16 of the periodic classification of elements. The plant comprises an outer case (1) embedding a chamber (2) divided into one deposition zone (2a) and one evaporation zone (2b), which are separated by a screen (3) interrupted by at least one cylindrical transfer member provided with actuation means rotating about its axis (5). To the deposition zone (2a) a magnetron device (7) is associated, for the deposition by sputtering of at least one element for each of the groups 11 and 13 on the side surface (?) of the cylindrical member that is in the deposition zone (2a). To the evaporation zone (2b) a cell (10) for the evaporation of at least one element of the group 16 is associated, and such an evaporation zone (2b) houses a substrate (8a) on which the film (8) is produced.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: February 24, 2015
    Assignee: VOLTASOLAR S.r.l.
    Inventors: Maurizio Filippo Acciarri, Simona Olga Binetti, Leonida Miglio, Maurilio Meschia, Raffaele Moneta, Stefano Marchionna
  • Patent number: 8956515
    Abstract: Provided is a sputtering apparatus which can form a multilayer film giving high productivity and with less spiral pattern by effective use of targets, and a method of forming multilayer film using the apparatus. An embodiment is a multilayer-film sputtering apparatus comprising: a rotatable cathode unit (30) having cathodes (7a and 7b) arranged on the same circumference with respect to the rotational center, and having a power-supply mechanism for supplying power to each cathode; a sensor (14) for detecting the position of cathode; and a rotation mechanism for rotating the cathode unit (30).
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: February 17, 2015
    Assignee: Canon Anelva Corporation
    Inventor: Masahiro Shibamoto
  • Patent number: 8956512
    Abstract: A target is provided opposite to a wafer mounted on in a vacuum chamber, and a magnet array body is disposed above the target. In the magnet array body, ring-shaped magnet arrays are arranged to generate annular magnetic fields in the circumferential direction of the wafer, and a sputtering film formation is performed by switching between the magnetic fields.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: February 17, 2015
    Assignee: Tokyo Electron Limited
    Inventor: Shigeru Mizuno
  • Patent number: 8932438
    Abstract: The magnetic anisotropy of a magnetic layer in a spin valve tunnel magnetoresistive element or giant magnetoresistive element is enhanced. Deposition of the magnetic layer is performed by making sputtering particles obliquely incident on a substrate from a certain incident direction at a certain incident angle.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: January 13, 2015
    Assignee: Canon Anelva Corporation
    Inventors: Koji Tsunekawa, Hiroyuki Hosoya, Yoshinori Nagamine, Shinji Furukawa, Naoki Watanabe
  • Patent number: 8916034
    Abstract: A thin-film forming sputtering system capable of a sputtering process at a high rate. A thin-film forming sputtering system includes: a vacuum container; a target holder located inside the vacuum container; a target holder located inside the vacuum container; a substrate holder opposed to the target holder; a power source for applying a voltage between the target holder and the substrate holder; a magnetron-sputtering magnet provided behind the target holder, for generating a magnetic field having a component parallel to a target; and radio-frequency antennae for generating radio-frequency inductively-coupled plasma within a space in the vicinity of the target where the magnetic field generated by the magnetron-sputtering magnet has a strength equal to or higher than a predetermined level.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: December 23, 2014
    Assignee: EMD Corporation
    Inventors: Yuichi Setsuhara, Akinori Ebe, Jeon Geon Han
  • Patent number: 8906208
    Abstract: A sputtering apparatus includes a substrate holder which holds a substrate to be rotatable in the plane direction of the processing surface of the substrate, a substrate-side magnet which is arranged around the substrate and forms a magnetic field on the processing surface of the substrate, a cathode which is arranged diagonally above the substrate and receives discharge power, a position detection unit which detects the rotational position of the substrate, and a controller which controls the discharge power in accordance with the rotational position detected by the position detection unit.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: December 9, 2014
    Assignee: Canon Anelva Corporation
    Inventors: Toru Kitada, Naoki Watanabe, Motonobu Nagai
  • Patent number: 8894824
    Abstract: A medical implant has a microscopically rough outer coating that serves to bond the implant to animal tissue. The coating is applied to the implant by physical vapor deposition. The coating preferable is applied via a generally oblique coating flux or a low energy coating flux. In some embodiments, the coating has pores. The pores can contain a drug, which can diffuse over a period of time. The coating may be partially nonporous to protect the implant from corrosion. The coating can have an outer porous layer that can bond with animal tissue easily.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: November 25, 2014
    Assignee: Isoflux, Inc.
    Inventors: David A. Glocker, Mark M. Romach
  • Patent number: 8877019
    Abstract: A sputtering apparatus includes a substrate holder, a magnetic field applying unit, and target mounting table. The substrate holder includes a first stage which can mount a substrate and can rotate about a first rotating shaft, a second stage which can rotate about a second rotating shaft shifted from the first rotating shaft, a spinning unit which rotates the first stage about the first rotating shaft, and a revolving unit which revolves the first stage about the second rotating shaft. The magnetic field applying unit applies a magnetic field in a specific direction to the substrate. The target mounting table can mount a target configured to deposit a film on the substrate. The spinning unit rotates the first stage in a direction opposite to that of the rotation of the revolving unit, and rotates the first stage so as to maintain the specific direction of the magnetic field.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: November 4, 2014
    Assignee: Canon Anelva Corporation
    Inventor: Franck Ernult
  • Patent number: 8864955
    Abstract: The invention is related to a process to apply a heater function to a plastic glass that was made of a polycarbonate. The process includes a sputtering process that allows producing high performance heater function on a plastic glass. Another aspect of the invention is the plastic glass mirrors produced by the inventive process.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 21, 2014
    Assignee: SMR Patents S.a.r.l.
    Inventors: Gilles Benoit, Farid Manzeh, Christophe Laloup
  • Patent number: 8858763
    Abstract: Disclosed are apparatus and method embodiments for achieving etch and/or deposition selectivity in vias and trenches of a semiconductor wafer. That is, deposition coverage in the bottom of each via of a semiconductor wafer differs from the coverage in the bottom of each trench of such wafer. The selectivity may be configured so as to result in punch through in each via without damaging the dielectric material at the bottom of each trench or the like. In this configuration, the coverage amount deposited in each trench is greater than the coverage amount deposited in each via.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: October 14, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Erich R. Klawuhn, Robert Rozbicki, Girish A. Dixit
  • Patent number: 8852682
    Abstract: A high strength composite particle comprised of a series of incrementally applied resin microlayer coatings such that each of the microlayer partial coatings are interleaved with each other is described. Methods of making the composite particles, as well as methods of using such particles as a proppant in oil and gas well hydraulic fracturing are also described.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: October 7, 2014
    Assignee: Fairmount Minerals, Ltd.
    Inventors: A. Richard Sinclair, Syed Akbar, Patrick R. Okell
  • Patent number: 8834685
    Abstract: The sputtering apparatus has: a vacuum chamber in which a substrate is disposed; a cathode unit which is disposed inside the vacuum chamber so as to lie opposite to the substrate. The cathode unit has mounted a bottomed cylindrical target material from a bottom side thereof into at least one recessed portion formed in one surface of a holder, and has assembled therein a magnetic field generator for generating a magnetic field in an inside space of the target material.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: September 16, 2014
    Assignee: Ulvac, Inc.
    Inventors: Naoki Morimoto, Junichi Hamaguchi
  • Patent number: 8834686
    Abstract: A metallic nanoparticle coated microporous substrate, the process for preparing the same and uses thereof are described.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: September 16, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Donald J. McClure, Mario A. Perez
  • Patent number: 8828199
    Abstract: A support device for a magnetron arrangement with a rotating target includes a housing with a drive shaft mounted to rotate in the housing. An end of the drive shaft accessible from outside of the housing connects to the rotating target and another end lies within the housing for introduction of a torque. An electric motor with a stator and a rotor is arranged within the housing to generate a torque.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: September 9, 2014
    Assignee: VON ARDENNE Anlagentechnik GmbH
    Inventors: Goetz Teschner, Hans-Jürgen Heinrich, Harald Grune, Sven Haehne
  • Patent number: 8828194
    Abstract: A layer system that can be annealed comprises a transparent substrate, preferably a glass substrate, and a first layer sequence which is applied directly to the substrate or to one or more bottom layers that are deposited onto the substrate. The layer sequence includes a substrate-proximal blocking layer, a selective layer and a substrate-distal blocking layer. Also provided is a method for producing a layer system that can be annealed and has a sufficient quality even under critical climatic conditions and/or undefined conditions of the substrate. During the heat treatment (annealing, bending), the color location of the layer system is maintained substantially stable and the color location can be widely varied at a low emissivity of the layer system. For this purpose, a first dielectric intermediate layer is interposed between the substrate-proximal blocking layer and the selective layer and is configured as a substoichiometric gradient layer.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 9, 2014
    Assignee: Von Ardenne Anlagentechnik GmbH
    Inventors: Joerg Fiukowski, Matthias List, Hans-Christian Hecht, Falk Milde
  • Patent number: 8821697
    Abstract: Method and apparatus for sputter depositing silver selenide and controlling defect formation in and on a sputter deposited silver selenide film are provided. A method of forming deposited silver selenide comprising both alpha and beta phases is further provided. The methods include depositing silver selenide using sputter powers of less than about 200 W, using sputter power densities of less than about 1 W/cm2, using sputter pressures of less than about 40 mTorr and preferably less than about 10 mTorr, using sputter gasses with molecular weight greater than that of neon, using cooling apparatus having a coolant flow rate at least greater than 2.5 gallons per minute and a coolant temperature less than about 25° C., using a magnetron sputtering system having a magnetron placed a sufficient distance from a silver selenide sputter target so as to maintain a sputter target temperature of less than about 350° C. and preferably below about 250° C.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: September 2, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Allen McTeer